

ENGINEERED SOLUTIONS FOR INDUSTRIAL & HVAC APPLICATIONS

www.flexonics.com

Contents

Introduction1
Engineering Information2
Expansion Joint Design Basics
Applications Engineering
Standard Flange Data9
NCB Expansion Joints13
Free Flexing Expansion Joints22
Controlled Flexing Expansion Joints24
Exhaust Flexible Connectors27
Externally Pressurized Expansion Joints
Expansion Compensators
Pipe Alignment Guides
Intermediate Guide Spacing Chart
Flexible Metal Pump Connectors
Rubber Expansion Joints
Non-Metallic Expansion Joints
Slip Pakt Expansion Joints
Pressure Relief/Safety Valve Connectors
Warranty Information
Expansion Joint Specification Sheet
Installation Instructions

Introduction

With origins dating to 1902, Senior Flexonics is today recognized as the leader in the metal expansion joint industry. Our leadership has been earned through consistent application of solid engineering principles, stringent quality standards and product innovation to produce safe and reliable metal expansion joints and flexible connectors for both industrial and HVAC piping and ducting applications.

Senior Flexonics Quality Assurance System has been certified to ISO 9001/14001. Our commitment to quality and engineering expertise is further reinforced by the design guidelines of CSA-B51, ASME code section VIII, DIV I, B31.1 and B31.3, and the Expansion Joint Manufacturers Association(EJMA). Detailed calculations used to design the expansion joints described in this catalogue are available to every Senior Flexonics customer.

This catalogue contains product performance data and physical descriptions for each of our light industrial and HVAC expansion joint, flexible connector, and pipe guide products. In addition, applications engineering information is included which describes the recommended practices for using these expansion joints in your piping system. Hopefully, you will find this catalogue to be a useful and informative technical reference manual that assists you in making an educated selection of the most suitable products for your application.

Notice: The information and technical data contained herein is believed to be accurate and the best information available to us at the time of printing this catalogue. All information and data contained herein is subject to change at any time, without notice. Because we have no control over the selection, installation or use of our products, we cannot be responsible for their improper application or misuse.

ENGINEERING INFORMATION

Glossary of Terms

External Cover - A device used to protect the bellows from foreign objects or mechanical damage. The Cover may also act as a pressure containing device for externally pressurized expansion joints.

Internal Liner - Specified for all Expansion Joints, regardless of the metal of the bellows in the following cases: 1)Where it is necessary to hold friction losses to a minimum and smooth flow is desired; and 2)Where flow velocities are high and could produce resonant vibration of the bellows. Sleeves are recommended when flow velocities exceed the following values:

Air, Steam and other Gases

- (1) up to 6" dia. 4 ft/sec. per inch of dia.
- (2) over 6" dia. 25 ft/sec.
- Water and other Liquids
 - (1) up to 6" dia. 1-2/3 ft/sec. per in. of dia.
 (2) over 6" dia. 10 ft. sec.

Reinforcing Ring - Used on some bellows which fits closely in the root of the convolution. The primary purpose of these devices is to reinforce the bellows against applied pressure - internal pressure in the case of rings fitted in the roots of the convolutions.

Tie Rods - Devices, usually in the form of rods or bars, attached to the Expansion Joint assembly whose primary function is to continuously restrain the full bellows pressure thrust during normal operation while permitting only lateral deflection. Angular rotation can be accommodated only if two tie rods are used and located 90° opposed to the direction of rotation.

Limit Rods - Devices, usually in the form of rods or bars, attached to the expansion joint assembly whose primary function is to restrict the bellows movement range (axial, lateral and angular) during normal operation. In the event of a main anchor failure, they are designed to prevent bellows over-extension or over-compression while restraining the full pressure loading and dynamic forces generated by the anchor failure.

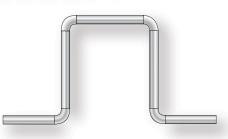
Weld Ends - The ends of a bellows unit equipped with pipe suitably beveled for welding to adjacent piping or equipment.

Flanged Ends - The ends of a bellows unit equipped with flanges for the purpose of bolting the unit to the mating flanges of adjacent piping or equipment.

Center Pipe - A common connection which joins two bellows.

Van Stoned Ends - In this type of construction, the flanges are slipped over the ends of the bellows and the bellows material is flared out or "Van Stoned" over the faces of the flanges. The bellows material prevents contact between the flanges and the medium flowing through the pipe. During installation, the Expansion Joint flanges can be rotated to match the bolt holes in the mating pipe line flanges. Although flat faced flanges are generally used for this type of construction, the Van Stoned portion of the bellows material overlapping the face of the flanges creates a condition which is, in effect, equivalent to a raised face.

THERMAL EXPANSION COEFFICIENTS (IN./100 FT.)


Temperature F.	Carbon Steel Carbon-Moly Low-Chrome	Austenitic Stainless Steel	Copper
-25	-0.68	-0.98	-1.05
0	-0.49	-0.72	-0.79
25	-0.32	-0.46	-0.51
50	-0.14	-0.21	-0.22
70	0.00	0.00	0.00
100	0.23	0.34	0.34
125	0.42	0.62	0.62
150	0.61	0.90	0.90
175	0.80	1.18	1.18
200	0.99	1.46	1.48
225	1.21	1.75	1.77
250	1.40	2.03	2.05
275	1.61	2.32	2.34
300	1.82	2.61	2.62
325	2.04	2.90	2.91
350	2.26	3.20	3.19
375	2.48	3.50	3.48
400	2.70	3.80	3.88
425	2.93	4.10	4.17
450	3.16	4.41	4.47
475	3.39	4.71	4.76
500	3.62	5.01	5.06
525	3.86	5.31	5.35
550	4.11	5.62	5.64
575	4.35	5.93	
600	4.60	6.24	
625	4.86	6.55	
650	5.11	6.87	
675	5.37	7.18	
700	5.63	7.50	
725	5.90	7.82	
750	6.16	8.15	
775	6.43	8.47	
800	6.70	8.80	

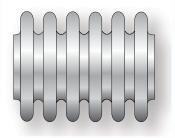
EXPANSION JOINT DESIGN BASICS

Piping Flexibility

All materials expand and contract with thermal change. In the case of piping systems, this dimensional change can produce excessive stresses throughout the piping system and at fixed points such as vessels and rotating equipment, as well as within the piping itself.

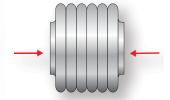
Pipe loops may add the required flexibility to a piping system if space permits, however the initial cost of the additional pipe, elbows and supports must be considered. In addition, increased continuous operating costs due to pressure drop may result from the frictional resistance of the flowing media through additional elbows and pipe. In some cases, pipe diameter must be increased to compensate for losses due to pressure drop.

A practical and cost effective means of achieving piping system flexibility in a compact design is through the application of expansion joints. The most efficient piping system is the shortest and most directly routed system and expansion joints make this possible.


Expansion joints provide an excellent solution for isolation of settlement, seismic deflection, mechanical vibration and sound attenuation transmission produced by rotating equipment.

Design Basics

Metal bellows expansion joints consist of a flexible bellows element, appropriate end fittings such as flanges or butt-weld ends to allow connection to the adjacent piping or equipment, and other accessory items that may be required for a particular service application.


BELLOWS DESIGN

Bellows are manufactured from relatively thin-walled tubing to form a corrugated cylinder. The corrugations, commonly referred to as convolutions, add the structural reinforcement necessary for the thin-wall material to contain system pressure. The bellows designer selects the thickness and convolution geometry to produce a bellows design that approaches, and often exceeds the capacity of the adjoining pipe to contain system pressure at the specified design temperature.

Flexibility of the bellows is achieved through bending of the convolution sidewalls, as well as flexing within their crest and root radii. In most cases, multiple convolutions are required to provide sufficient flexibility to accommodate the expected expansion and contraction of the piping system.

MOVEMENT CAPABILITIES

Axial Compression: Reduction of the bellows length due to piping expansion.

Axial Extension: Increase of the bellows length due to pipe contraction.

Lateral Offset: Transverse motion which is perpendicular to the plane of the pipe with the expansion joint ends remaining parallel.

Angular Rotation: Bending about the longitudinal centerline of the expansion joint.

Torsion: Twisting about the longitudinal axis of the expansion joint can reduce bellows life or cause expansion joint failure and should be avoided. Expansion joints should not be located at any point in a piping system that would impose torque to the expansion joint as a result of thermal change or settlement.

CYCLE LIFE

In most applications, design movements cause the individual convolutions to deflect beyond their elastic limits, producing fatigue due to plastic deformation, or yielding. One movement cycle occurs each time the expansion joint deflects from the installed length, to the operating temperature length, and then back again to the original installation length.

In the majority of applications, total shutdowns are infrequent, therefore a bellows with a predicted cycle life of one or two thousand cycles is usually sufficient to provide reliable fatigue life for decades of normal service. High cycle life designs may be desirable for service applications that include frequent start up/shut down cycles.

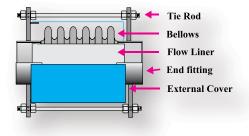
The bellows designer considers such design variables as material type, wall thickness, the number of convolutions and their geometry to produce a reliable design for the intended service with a suitable cycle life expectancy.

SQUIRM

An internally pressurized bellows behaves in a manner similar to that of a slender column under compressive load. At some critical end load, the column will buckle, and in a similar manner, at a sufficient pressure, an internally pressurized bellows that is installed between fixed points will also buckle, or squirm.

Bellows squirm is characterized by a gross lateral shift of the convolutions off of the longitudinal centerline. Bellows squirm can reduce cycle life, or in extreme cases, produce a catastrophic failure.

To avoid squirm, the bellows designer must limit movement capacity and flexibility to a level that insures that the bellows retains a conservative margin of column stability beyond the required design pressure.


END FITTINGS

Expansion joints will include appropriate end fittings such as flanges or butt-weld ends that should match the dimensional requirements and materials of the adjoining pipe, or equipment. Small diameter compensators are available with threaded male ends, butt weld ends or copper sweat ends. Threaded flanges may be added to the threaded end compensators if a flanged connection is preferred.

ACCESSORIES

Flow liners are installed in the inlet bore of the expansion joint to protect the bellows from erosion damage due to an abrasive media or resonant vibration due to turbulent flow or velocities which exceed:

- For air, steam and other gases
 - a) Up to 6" dia.- 4 ft./sec./inch of diameter
 - b) Above 6" dia. -25 ft/sec
- For water and other liquids
 - a) Up to 6" dia. 2 ft./sec./inch of diameter
 - b) Above 6" dia. -10 ft./sec.

Expansion joints that are installed within ten pipe diameters downstream of elbows, tees, valves or cyclonic devices should be considered to be subject to flow turbulence. The actual flow velocity should be multiplied by 4 to determine if a liner is required per the above guidelines. Actual or factored flow velocities should always be included with design data, particularly flow that exceeds 100 ft./sec. which require heavy gauge liners.

External Covers are mounted at one end of the expansion joint, providing a protective shield that spans the length of the bellows. Covers prevent direct contact with the bellows, offering personnel protection, as well as protection to the bellows from physical damage such as falling objects, weld splatter or arc strikes. Covers also provide a suitable base for external insulation to be added over an expansion joint. Some insulating materials, if wet, can leach chlorides or other substances that could damage a bellows.

Tie rods eliminate pressure thrust and the need for main anchors required in an unrestrained piping system. Axial movement is prevented with the use of tie rods. Designs that have only two tie rods have the additional ability to accommodate angular rotation. Limit rods are similar, however they accommodate a specified axial capability.

APPLICATION ENGINEERING

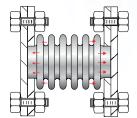
Design Considerations

The addition of expansion joints in a piping system introduces reaction forces produced by the expansion joint that must be accommodated in the design of the piping system.

SPRING FORCE

Expansion joints behave in a manner that is similar to a spring; as movement occurs, expansion joints produce a resistive force. This resistance is stated as spring rate and measured as the force required to deflect the bellows 1" in the axial or lateral direction; or inch-lbs./degree for angular rotation. Spring force is the spring rate times the deflection in inches.





PRESSURE THRUST

If we consider a pipe section with blind flanges attached at each end, it is obvious that internal pressure produces a thrust force against the flange surfaces in opposing directions, however the longitudinal rigidity of the pipe prevents elongation.

If we add an expansion joint in the center of the pipe, this rigidity is lost and the thrust force may overcome the spring resistance of the bellows, producing elongation and possibly uncorrugating of the bellows.

A pressurized bellows behaves like a hydraulic cylinder. Internal pressure bears against the walls of the convolutions, just as pressure bears against the face of a piston. This pressure produces a force that is equal to the internal pressure multiplied by the effective area of the bellows mean diameter ([ID + OD]/2) and will cause the flexible bellows to extend outward, unless it is restrained from doing so. In most pressure piping applications, pressure thrust is usually much greater than spring force.

PIPE ANCHORS

By adding fixed points in the piping system, referred to as main anchors, the expansion joint is prevented from extending. Pressure thrust force is directed into the immovable main anchor. Now the expansion joint is forced to compress or extend axially, solely in response to dimensional changes in the pipe segment located between these main anchors.

Anchor design requires the consideration of forces due to pressure thrust at system test pressure, which is customarily 1 1/2 times the design pressure. In addition, bellows spring forces produced by deflection, friction force due to pipe movement across contact surfaces, forces and moments resulting from wind loading, bending and other influences must be considered in the design of anchors.

Main anchors are intended to anchor the pipe from motion in any direction.

Directional main anchors are, as the name implies, intended to anchor the piping system in one direction, while allowing movement to occur from a transverse direction. **Intermediate anchors** can isolate multiple expansion joints that are installed in series to accommodate large motions beyond the capability of a single expansion joint. This separation is required to insure that each expansion joint is able to function as intended and not be affected by the flexibility characteristics of adjoining units. Intermediate anchors react only to differences in spring force and are not exposed to pressure thrust.

PIPE GUIDES

With the addition of expansion joints and anchors, each pipe segment now behaves like a slender column under the compressive load of expansion joint pressure thrust and/or spring force bearing against the anchors. Bowing or buckling at the expansion joint may occur unless the pipe is properly guided.

Pipe guides are required to stabilize this slender column, preventing buckling and insuring that pipe growth is directed into the expansion joint as axial movement.

The first pipe guide must be located within four pipe diameters of each side of the expansion joint and a second guide placed within 10-14 pipe diameters of the first guide. Additional guides may be required based on guide spacing tables that consider diameter and system pressure. A convenient intermediate guide spacing chart is provided on page 23.

The recommendations given for pipe guides represent the minimum requirements for controlling pipelines which contain expansion joints and are intended to protect the expansion joints and pipe system from undefined external forces which could cause system failure.

INSTALLATION MISALIGNMENT

Installation misalignment reduces the total movement capacity of the expansion joint. Correction of misalignment should be completed prior to installation of the expansion joints. If misalignment can not be avoided, contact one of our engineers for guidance.

CONCURRENT MOVEMENTS

Expansion joint movement capacity is listed in this catalogue as the non-concurrent capacity for each type of movement. Axial, lateral and angular movements usually occur simultaneously, therefore it is essential that the concurrent movement capacity of the expansion joint be determined. This may be calculated by determining the required percentage of non-concurrent capacity required to meet each type of specified motion. The sum of these percentage values should be equal to or less than 1.0.

Required Axial Movement	+	Required Laterial Movement	+	Required Angular Movement	< 1
Catalogue Rated Axial		Catalogue Rated Lateral		Catalogue Rated Angular	

EXPANSION JOINT PRODUCT

Normal Corr expansion joints (shown on pages 13-21) employ a standardized bellows design ideally suited for general industrial applications. Offered with flanges or butt weld ends from 3" to 48" nominal diameter for design pressures to 300 psig at 650°F. (Consult factory for larger sizes)

High Corr bellows are hydraulically formed to produce superior fatigue life and maximum strength for severe service applications. This product provides an excellent means of absorbing large pipe motions (up to 7 1/2"). High corr bellows are available in two styles: Free Flexing and Controlled Flexing.

Free Flexing expansion joints (shown on pages 22-23) are widely used in process and steam piping applications to 50 psig. In addition, the Free Flexing expansion joint is recommended for compressor connections, engine intake and exhaust piping, ventilation and pump suction or discharge lines.

Controlled Flexing expansion joints (shown on pages 24-26) combine the Free Flexing bellows design with mated neck rings and control rings between each convolution. This rugged construction reinforces the bellows for higher pressure applications. With an external cover this expansion joint provides a high degree of safety for the most severe operating conditions.

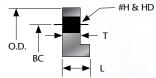
Externally Pressurized expansion joints (shown on page 28) have a heavy duty packless design that enables this product to accommodate large amounts of axial motion at high pressure without the risk of bellows squirm. Limited to axial movement only, the bellows is fully enclosed within an outer shell which is constructed of standard weight pipe, offering the highest degree of protection for the bellows and personnel. External insulation may be added directly over the outer shell. This expansion joint design also permits direct burial. Consult factory for additional information.

Expansion Compensators (shown on page 29) provide the inherent performance benefits and safety features of the externally pressurized expansion joint design in a compact package. Intended primarily for steam supply and condensate return lines, as well as hot and chilled water piping, this product is suitable for any small diameter axial expansion application.

Exhaust Flexible Connectors (shown on page 27) are designed for low pressure applications such as stationary and marine gas turbine, diesel engine exhaust, and low pressure ducting. Large motion capability, low spring forces and reduced weight make this product ideally suited for thin-wall duct systems.

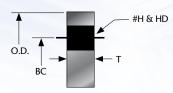
Flexible Metal Pump Connectors (shown on pages 32-33) reduce stresses at piping connections to sensitive rotating equipment such as pumps and compressors. Capable of absorbing thermal growth, piping misalignment, vibration and noise, pump connectors offer extended service life for all rotating equipment.

Rubber Expansion Joints (shown on page 34-35) can also be used for similar applications as the Flexible Metal Pump Connector in a non-metallic construction. They are ideally suited for noise reduction in piping systems.


Pipe Alignment Guides (shown on pages 30-31) are an essential component of any properly designed piping system that employs expansion joints. These guides permit axial motion, while restricting lateral, angular and bowing movements.

Specialty Products including Slip Pakt Expansion Joints, Non-Metallic Expansion Joints, and Pressure Relief Safety Valve Connectors are briefly described on pages 36-37 and more information and technical data may be obtained by consulting the factory.

STANDARD FLANGE DATA


This abbreviated flange data summary is to aide system designers in selecting the optimum pipe and duct flanges. The working pressure at temperature ratings were obtained from applicable flange specifications. Where elevated temperature data was not available, the rated working pressure at ambient was down rated in accordance with ASME cade versus temperature correction factors.

Slip on Flanges	Nominal I.D.	Working Pressure Rating (PSIG) at Temperature (DEG.F)										
Slip on Flanges	Nominal I.D.	(20) to 100	200	300	400	500	600	700	800			
Class 125 L.W. Forged Steel	6″ TO 12″	175	152	134	116	98	80	62	46			
AWWA 125 L.W. C207-54T Class D Mat'l. A-105	14″ TO 96″	150	131	115	99	83	67	51	38			
Class 150 Forged Steel ANSI B16.5 Mat'l. A-105	1″ TO 24″	285	260	230	200	170	140	110	80			
Class 125 Forged Steel C207-54T Class E Mat'l. A-105	26" TO 96"	275	240	210	180	150	130	110	80			
Class 300 Forged Steel ANSI B16.5 Mat'l. A-105	1″ TO 24″	740	675	655	635	600	550	535	410			
Class 400 Forged Steel ANSI B16.5 Mat'l. A-105	1" TO 24"	990	900	875	845	800	730	710	550			

The dimensional data shown below has been consolidated from current standards for easy reference. All dimensions are in inches.

Size			Clas	s 125	LW					Class	5 150	B16	.5			(lass	300 B	16.5	5		Size
(ln.)	OD	т	L	ВС	#H	HD	WT Lbs.	OD	т	L	ВС	#H	HD	WT Lbs.	OD	т	L	ВС	#H	HD	WT Lbs.	(ln.)
1 ¹ /2								5	11/16	7/8	3 ⁷ /8	8	5/8	3	6 ¹ /8	11/16	7/8	37/8	8	5/8	3	1 ¹ /2
2								6	3/4	1	4 ³ /4	8	3/4	5	6 ¹ /2	3/4	1	4 ³ / ₄	8	3/4	5	2
2 ¹ / ₂								7	7/8	1 ¹ /8	5 ¹ /2	4	3/4	7	7 ¹ /2	7/8	1 ¹ /8	5 ¹ /2	4	3/4	7	2 ¹ / ₂
3								7 ¹ /2	¹⁵ /16	1 ³ /16	6	4	3/4	8	8 ¹ /4	¹⁵ /16	1 ³ /16	6	4	3/4	8	3
3 ¹ / ₂								8 ¹ /2	¹⁵ /16	1 ¹ / ₄	7	8	3/4	11	9	¹⁵ /16	1 ¹ /4	7	8	3/4	11	3 ¹ / ₂
4								9	¹⁵ /16	1 ⁵ /16	7 ¹ /2	8	3/4	13	10	¹⁵ /16	1 ⁵ /16	7 ¹ /2	8	3/4	13	4
5								10	¹⁵ /16	17/16	8 ¹ /2	8	7/8	15	11	1	1 ⁹ /16	9 ¹ / ₂	8	7/8	19	5
6	11	9/16	1 ¹ /4	9 ¹ / ₂	8	7/8	13	11	1	1 ⁹ /16	9 ¹ / ₂	8	7/8	19	12 ¹ /2	1 ¹ /8	1 ³ /4	113/4	8	7/8	30	6
8	13 ¹ /2	9/16	1 ¹ /4	11 ¹ /2	8	7/8	18	13 ¹ /2	1 ¹ /8	1 ³ /4	11 ³ /4	8	7/8	30	15	1 ³ /16		14 ¹ /4	12	1	43	8
10	16	11/16	1 ¹ /4	14 ¹ /4	12	1	26	16	1 ³ /16		14 ¹ /4	12	1	43	17 ¹ /2	1 ¹ /4	2 ³ /16	17	12	1	64	10
12	19	11/16	1 ¹ /4	17	12	1	42	19	1 ¹ /4	2 ³ /16	17	12	1	64	20 ¹ / ₂	2	2 ⁷ /8	17 ³ /4	16	1 ¹ /4	115	12
14	21	3/4	1 ¹ /4	18 ³ /4	12	1 ¹ /8	44	21	1 ³ /8	2 ¹ /4	18 ³ /4	12	1 ¹ /8	90	23	2 ¹ /8	3	20 ¹ /4	20	1 ¹ /4	165	14
16	23 ¹ /2	3/4	1 ¹ /4	21 ¹ /4	16	1 ¹ /8	58	23 ¹ /2	1 ⁷ /16	2 ¹ / ₂	21 ¹ /4	16	1 ¹ /8	98	25 ¹ /2	2 ¹ /4	3 ¹ /4	22 ¹ /2	20	13/8	190	16
18	25	3/4	1 ¹ /4	22 ³ /4	16	1 ¹ /4	59	25	1 ⁹ /16	211/16	22 ³ /4	16	1 ¹ / ₄	130	28	2 ³ /8	3 ¹ / ₂	24 ³ / ₄	24	1 ³ /8	250	18
20	27 ¹ / ₂	3/4	1 ¹ /4	25	20	1 ¹ /4	69	27 ¹ / ₂	1 ¹¹ /16		25	20	1 ¹ /4	165	30 ¹ /2	2 ¹ / ₂	3 ³ /4	27	24	1 ³ /8	315	20
22	29 ¹ / ₂	1	1 ³ /4	27 ¹ /4	20	1 ³ /8	76	29 ¹ / ₂	1 ¹³ /16		27 ¹ /4	20	1 ³ /8	185	33	2 ⁵ /8	4	29 ¹ /4	24	15/8	370	22
24	32	1	1 ³ /4	29 ¹ / ₂	20	1 ³ /8	115	32	17/8	3 ¹ /4	29 ¹ / ₂	20	1 ³ /8	220	36	2 ³ /4	4 ³ /16	32	24	15/8	475	24
26	34 ¹ /4	1	1 ³ /4	31 ³ /4	24	1 ³ /8	125	2414	01/		ass 12:		434	070								26
28	36 ¹ /2	1	1 ³ /4	34	28	1 ³ /8	140	36 ¹ /2	2 ¹ /16	3 ¹ /16	34	28	1 ³ /8	270								28
30	38 ³ /4	1	1 ³ /4	36	28	1 ³ /8	150	38 ³ /4	2 ¹ /8	3 ¹ /2	36	28	1 ³ /8	305								30
32	41 ³ /4	1 ¹ /8	1 ³ /4	38 ¹ /2	28	1 ⁵ /8	205															32
34	43 ³ /4	1 ¹ /8 1 ¹ /8	1 ³ /4 1 ³ /4	40 ¹ / ₂ 42 ³ / ₄	32 32	15/8 15/8	215 235	10	3 3/-	3 ³ /4	42 ³ /4	32	15/8	450								34 36
36 38	46 48 ³ /4	1 ⁻ /8 1 ¹ /8	1 ⁻ /4 1 ³ /4	42 ⁻ /4 45 ¹ /4	32 32	1 ⁻ /8 1 ⁵ /8	255	46	2 ³ /8	3 -/4	4Z ⁻ /4	52	1-/8	450								36 38
38 40	40 /4 50 ³ /4	1 /* 1 ¹ /8	1 ³ /4	43 /4 47 ¹ /4	32 36	1 ⁵ /8	230															38 40
40	53		1 ³ /4	47 /4 49 ¹ /2	36	1 ⁵ /8	330	53	2 ⁵ /8	4	49 ¹ / ₂	36	15/8	650								40
48	59 ¹ /2		1 /4 2 ¹ /2	56	44	1 ⁵ /8	425	59 ¹ /2	2 /8 2 ³ /4	ч 4 ¹ /8	-7 /2 56	44	1 ⁵ /8	800								48
40 54	66 ¹ /4		2 /2 2 ¹ /2	62 ³ /4	44	17/8	500	66 ¹ /4	2 /4 3	4 /° 4 ³ /8	50 62 ³ /4	44	1 /° 1 ⁷ /8	1025								40 54
60	73		2 /2 2 ³ /4	69 ¹ /4	52	1 ⁷ /8	640	73	3 ¹ /8	4 ¹ /2	69 ¹ /4	52	1 ⁷ /8	1250								60
66	80		2 ³ /4	76	52	1 ⁷ /8	750	80	3 ³ /8	4 ⁷ /8	76	52	1 ⁷ /8	1175								66
72	86 ¹ /2	1 ¹ /2	2 / · 2 ³ /4	82 ¹ /2	60	1 ⁷ /8	850	86 ¹ /2	3 ¹ /2	5	82 ¹ /2	60	17/8	1925								72
84	99 ³ /4	1 ³ /4	3	95 ¹ /2	64	2 ¹ /8	1000	99 ³ /4	3 ⁷ /8	5 ³ /8	95 ¹ /2	64	2 ¹ /8	2600								84
96	113 ¹ /4		3 ¹ /4	108 ¹ /2		2 ³ /8	1650	113 ¹ /4		5 ³ /4	108 ¹ /2		2 ³ /4	3275								96
20		-	57.	100 /2	50	~ / °	1000		. / .	57.	100 /2	50	- / ·	52/5								20

The dimensional data shown below has been consolidated from current standards for easy reference.

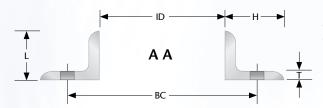
To Select the overall length of an assembly that uses plate flanges, use the FF (Flange by Flange overall laegth from the data page and adjust the overall catalogue overall length by the amount shown in the column labelled FF OAL adjust.

			Plate Flange Dir	nensions			FF OA	FF OAL Adjust		
Nominal Pipe Size	OD	т	BC		HD	Wt.	Catalog	Des.Pres.		
Pipe Size	(in.)	(in.)	(in.)	#H	(in.)	(Lbs.)	50	150		
2	6	5/8	4 3/4	4	3/4	4	-3/4	-3/4		
2 1/2	7	5/8	5 1/2	4	3/4	5	-1	-3/4		
3	7 1/2	5/8	6	4	3/4	6	-1 1/8	-1 1/8*		
3 1/2	8 1/2	5/8	7	8	3/4	8	-1 1/4	-1 1/4		
4	9	5/8	7 1/2	8	3/4	8	-1 3/8	-1 3/8		
5	10	3/8	8 1/2	8	7/8	11	-1/2*	-1/2*		
6	11	3/4	9 1/2	8	7/8	12	-3/8*	-3/8*		
8	13 1/2	1	11 3/4	8	7/8	23	-1/4*	-1/4*		
10	16	1	14 1/4	12	1	30	-1/8*	-1/8*		
12	19	1	17	12	1	43	-5/8*	-5/8*		
14	21	1 1/4	18 3/4	12	1 1/8	63	0	-2		
16	23 1/2	1 1/4	21 1/4	16	1 1/8	76	0	-2 1/2		
18	25	1 1/2	22 3/4	16	1 1/4	90	+1/2	5/8*		
20	27 1/2	1 1/2	25	20	1 1/4	106	+1/2	-1*		
22	29 1/2	1 1/2	27 1/4	20	1 3/8	120	-1/2	-1 1/2*		
24	32	1 1/2	291/2	20	1 3/8	133	-1/2	-3 1/2		
			300 psig Fland	ae Dimensio	ns					
2	(1/2	1				7	E /0			
2	61/2	1	5	8	3/4	7	-5/8	;		
2 1/2	7 1/2	1	5 7/8	8	7/8	9	-1	10		
3	8 1/4	1	6 5/8	8	7/8	11	-13			
3 1/2	9	1 1/8	7 1/4	8	7/8	15	-11			
4	10	1 1/8	7 7/8	8	7/8	19	-11			
5	11	1 1/4	9 1/4	8	7/8	24	-11			
6	12 1/2	1 1/2	10 5/8	12	7/8	34	-11			
8	15	1 1/2	13	12	1	49	-17			
10	17 1/2	1 3/4	15 1/4	16	1 1/8	66	-1 3			
12	20 1/2	2	17 3/4	16	1 1/4	102	-1 3	/4		
14	23	2	20 1/4	20	1 1/4	132	-2			
16	25 1/2	2 1/4	22 1/2	20	1 3/8	175	-2			
18	28	2 1/2	24 3/4	24	1 3/8	226	-2			
20	30 1/2	2 1/2	27	24	1 3/8	265	-21			
22	33	2 3/4	29 1/4	24	1 5/8	326	-21			
24	36	2 3/4	32	24	1 5/8	394	-2 7	/8		

Notes:

Plate Flanges are designed for use with sheet gasket.

Flange gasket seating surface is a smooth mill finish.


Not recommended for use with spiral wound gaskets.

A36 material not recommended for use above 700F. or below20F.

Not suggested for applications where ASME B31.3 or SectionVIII Pressure Vessel Code requirements apply.

Standard Catalog Flanges: 50 psig design/Class 125 L.W., 150 psig design/Class 150, 300 psig design/ Class 300 * Lenght difference includes space required to avoide interference with bellows and flange nuts.

-[ANGLE FLANGES - LOW PRESSURE]--

5 PSIG MAX

- Economical flanges for low pressure seervice <5.Cap be added to single and universal expansion joints. see part number below . Material: carbon steel. other materials are available on request. Single overall length using angle flanges= WW OAL – 6 inches + 2*L.

Nominal	Actual ID	Angle	н	L	Approx.		Bolt Holes	
Diameter (in.)	(in.)	Thickness T (in.)			Weight (Lbs.)	Bolt Circle (in.)	Hole Size (in.)	Number of Holes
14	14 3/16	3/16	1 1/2	1 1/2	7	15 13/16	13/32	12
16	16 1/4	3/16	1 3/4	1 3/4	9.5	18 1/8	13/32	16
18	18 1/4	3/16	1 3/4	1 3/4	10.5	20 1/8	13/32	16
20	20 1/4	3/16	1 3/4	1 3/4	11.6	22 1/8	13/32	20
22	22 1/4	3/16	1 3/4	1 3/4	12.8	24 1/8	9/16	20
24	24 1/4	3/16	1 3/4	1 3/4	14	26 1/8	9/16	20
26	26 1/4	3/16	2	2	17.3	28 1/2	9/16	24
28	28 1/4	3/16	2	2	18.5	30 1/2	9/16	24
30	30 1/4	3/16	2	2	20	32 1/2	9/16	28
32	32 1/4	3/16	2	2	21.3	34 1/2	9/16	28
34	34 1/4	3/16	2	2	22.5	36 1/2	9/16	32
36	36 1/4	3/16	2	2	23.5	38 1/2	9/16	32
38	38 1/4	3/16	2	2	24.6	40 1/2	9/16	36
40	40 1/4	3/16	2	2	26.2	42 1/2	9/16	36
42	42 1/4	3/16	2	2	27.5	44 1/2	9/16	40
44	44 1/4	3/16	2	2	28.8	46 1/2	9/16	40
46	46 1/4	3/16	2	2	30	48 1/2	9/16	44
48	48 1/4	3/16	2	2	31.5	50 1/2	9/16	44
50	50 1/4	1/4	3	3	54	53 1/2	11/16	48
52	52 1/4	1/4	3	3	57	55 1/2	11/16	48
54	54 1/4	1/4	3	3	59.7	57 1/2	11/16	52
60	60 1/4	1/4	3	3	68.2	63 1/2	11/16	56
66	66 1/4	1/4	3	3	76.7	69 1/2	11/16	60
72	72 5/16	3/8	3	3	119.3	75 1/2	11/16	68
84	84 5/16	3/8	3	3	141.9	87 1/2	13/16	76
96	96 5/16	3/8	3	3	164.5	99 1/2	13/16	88
108	108 3/8	3/8	3	3	187.3	111 1/2	13/16	100
120	120 3/8	3/8	3	3	209.9	123 1/2	13/16	108
132	132 3/8	3/8	3	3	232.5	135 1/2	13/16	120
144	144 3/8	3/8	3	3	255.1	147 1/2	13/16	132

MATERIALS - COMMON METALLURGICAL PROBLEMS

Failure Mode	Cause	Frequently Used Solution				
Chloride Stress Corossion Crackling	Chlorides acting on highly stressed austentic stainless steel bellows (T304, T321, etc.)	Use a high nickle alloy like alloy 600 or alloy 625.				
Carbide Precipatation	Chromium carbides from in unstabilized stainless steel (T304, T316 at high temperature (over 700 F) causing loss of corrosion resistance at the grain boundaries.	Use a stabilized stainless steel (T321) or T347) or low carbon stainless steel (T304L) or another high alloy material that is less affected by carbide precipitation.				
Pitting Corrosion	Galvanic action causes holes to form in a bellows, usually from acids.	Use a bellows material containing molybdenum T316, Alloy 825, Alloy 625) or one of the specialty materials such as zirconium tantalum or titanium.				
Dew Point Corrosion	Liquid acid precipitates out of a sulfur rich flue gas stream in contact with the bellows element that operates just below the dew point for acid formation	Insulate the bellows to insure it operates above dew point in service or install a "Hot Blanket" to maintain a constant bellows skin temperature that is above dew point.				

Standard Materia	al Specifications
For Bellows Show	
ASTM Material	Part Number
Designation	Designation
A240 T304	304 (Catalog Standard)
A240 T304L	304L
A240 T309s	309s
A240 T316	316
A240 T316L	316L
A240 T317	317
A240 T317L	317L
A240 T321	321
A240 T347	347
B688 AL6XN	AL6XN
A240 7Mo plus A240 2205	7Mo plus 2205
A625 904L B463 20CB	904L 20Cb
A240 255	2000
B536 330	330
A240 253MA	253 MA
B435 230	233 MA 230
B162 200 (Nickel)	200
B162 200 (Nickel)	200
B127 Alloy 400 (Monel)	400
B168 600 (Inconel)	600
B433 617	617
B443 625 LCF	625 LCF
B409 800	800
B409 800H	800H
B424 825	825

BELLOWS MATERIAL DATA

Senior Flexonics engineers can form bellows from most ductile materials that can be welded by the automatic TIG butt welding process that results in a homogenious ductile weld structure. Companies specifying and purchasing bellows must give careful consideration to the selection of bellows material. When in doubt, consult with basic supplier mill Metallurgist. Senior Flexonics does not take responsibility for alloy selection.

Use of these materials codes as a suffix in the Catalogue part number will designate the bellows material that will be supplied by Senior Flexonics.

* ASME "SA" or "SB" materials are inventoried and are available upon request.

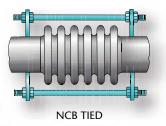
All bellows material purchased by Senior Flexonics is "mill annealed" in accordance with ASTM or ASME specification. Senior Flexonics does not perform any other heat treating operationbs before welding, after welding before forming convolutions or after forming convolutions unless specified by purchaser. Heat treatment of bellows after forming convolutions can lower bellows spring rate "squirm" pressure, and cycle life. Senior Flexonics does not recommend heat treatment be performed unless the bellows is operating at high temperature where time dependent properties of creep and stress rupture become significant.

NCB EXPANSION JOINTS

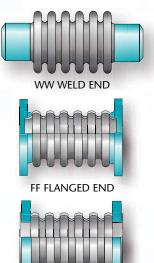
Normal Corr expansion joints employ a standardized bellows design ideally suited for general industrial applications. Offered with flanges or butt weld ends from 3" to 48" nominal diameter for design pressures to 300 psig at 650°F. Larger diameters are available in our Metal Catalogue. (Consult factory for larger sizes)

How to order: Example P/N

DIA	STYLE	ends	PRESSURE	CONS	LINER	COVER
8	NCB	FF	300	6	L	С


NORMAL CORR DATA

	SINGLE
Size Range	3" to 48" NPS *
Allowable Pressure	Vacuum to 300 psig
Stainless Steel Bellows	vacuum to 500 psig
Temperature Limits	
Stainless Steel Bellows	-20F to 650F. **
Axial Traverse	See Data Sheets
Lateral Motion	See Data Sheets


For sizes larger than 48" consult factory for information. ** With special alloys, temperatures of minus 425°F. to plus 1600°F. can be handled.

STYLE

NCB SINGLE

END CONNECTION

VV VANSTONE END

Please consult factory for floating flanges

MATERIALS OF CONSTRUCTION

BELLOWS: ASTM A240 T316L (standard)

• Other materials available (see page 12) PIPE: ASTM A53/A106 50 lb. Series: Sch. 40 150 lb. Series: Sch. 40 300 lb. Series: Sch. 40

FLANGES: A516-70 Plate & A105

50 lb. Series: 150 lb. ANSI B16.5 R.F.S.O. 150 lb. Series: 150 lb. ANSI B16.5 R.F.S.O. 300 lb. Series: 300 lb. ANSI B16.5 R.F.S.O.

COVERS: Carbon Steel

TIE RODS: Carbon Steel

LINERS: 300 Series Stainless Steel

- 1. Rated cycle life is 2000 cycles per EJMA 8th edition for any one movement tabulated.
- 2. To combine axial, lateral movements, refer to page 7.
- 3. Maximum axial extension movement is 10% of tabulated axial value.
- 4. To obtain greater movements or cycle life, contact the factory.
- 5. Catalogue pressure ratings are based upon a maximum bellows temperature of 650°F. Actual operating temperature should always be specified.
- 6. Maximum test pressure: $1 \frac{1}{2} \times \text{maximum working pressure.}$

-[NCB EXPANSION JOINTS]-

				NO	n-Concu	rrent	S	Туре	WW	Type FF			
Pipe	Eff.Area	PSI	# CONV	Axial	Lateral	Angular	Axial	Lateral	Angular	O.A.L.	Weight	O.A.L.	Weight
Size	in²			(in)	(in)	(deg)	(lbs/in)	(lbs/in)	(in-lb/deg)	inches		inches	
			5	0.45	0.08	10.00	1,338	6,503	45	7.19	4.08	4.56	16.92
	12	50	10	0.90	0.33	10.00	669	813	23	9.38	4.50	6.75	17.34
			15	1.35	0.75	10.00	446	241	15	11.56	4.92	8.94	17.76
			20	1.80	1.33	4.50	335	102	11	13.75	5.33	11.13	18.18
			5	0.33	0.06	9.00	3,450	15,719	109	7.19	4.30	4.56	17.14
3″		150	10	0.65	0.25	10.00	1,725	1,965	55	9.38	4.68	6.75	17.53
	11.4		15	0.98	0.56	10.00	1,150	582	36	11.56	5.07	8.94	17.91
			20	1.31	1.00	1.00	862	246	27	13.75	5.45	11.13	18.29
			5	0.26	0.05	6.50	4,480	21,773	152	7.19	4.54	5.56	27.38
	12	300	10	0.52	0.19	9.00	2,240	2,722	76	9.38	5.15	7.75	28.00
			15	0.69	0.39	7.50	1,845	981	61	11.56	5.59	9.94	28.43
			20	0.81	0.61	1.00	1,739	512	57	13.75	5.90	12.13	28.74
			5	0.44	0.07	10.00	1,502	9,274	65	7.19	4.85	4.69	23.05
		50	10	0.88	0.29	10.00	751	1,159	32	9.38	5.33	6.88	23.53
	15.5		15	1.32	0.65	10.00	501	343	22	11.56	5.80	9.06	24.01
			20	1.75	1.15	6.50	376	145	16	13.75	6.28	11.25	24.48
			5	0.28	0.05	6.50	3,548	21,443	149	7.19	4.97	4.69	23.18
3.5	15	150	10	0.57	0.19	10.00	1,774	2,680	75	9.38	5.46	6.88	23.66
			15	0.85	0.42	10.00	1,183	794	50	11.56	5.94	9.06	24.15
			20	1.13	0.75	1.00	887	335	37	13.75	6.43	11.25	24.63
			5	0.21	0.04	5.00	7,054	42,627	297	7.19	5.26	5.69	35.47
	15	300	10	0.43	0.14	7.50	3,527	5,328	148	9.38	5.86	7.88	36.07
			15	0.64	0.32	7.50	2,351	1,579	99	11.56	6.46	10.06	36.67
			20	0.85	0.57	1.00	1,764	666	74	13.75	7.06	12.25	37.27
			5	0.539	0.079	10.00	1,144	8,963	62	7.19	5.79	4.81	27.29
	20	50	10	1.078	0.314	10.00	572	1,120	31	9.38	6.43	7.00	27.93
			15	1.617	0.708	10.00	381	332	21	11.56	7.07	9.19	28.57
			20	2.156	1.258	0.50	286	140	16	13.75	7.71	11.38	29.22
			5	0.331	0.048	7.00	3,921	30,731	214	7.19	6.42	4.81	27.93
		150	10	0.662	0.193	10.00	1,961	3,841	107	9.38	7.37	7.00	28.88
4	20		15	0.993	0.434	10.00	1,307	1,138	71	11.56	8.33	9.19	29.83
			20	1.324	0.772	3	980	480	53	13.75	9.28	11.38	30.78
			5	0.263	0.038	5.50	6,932	54,327	378	7.19	6.80	5.69	36.31
	20	300	10	0.525	0.153	8.50	3,466	6,791	189	9.38	7.94	7.88	37.44
			15	0.788	0.345	8.5	2310	2,012	126	11.56	9.07	10.06	38.58
			20	1.050	0.613	0.5	1733	849	95	13.75	10.21	12.25	39.71

Materials:

_

Bellows --ASTM A240 - T316L. For alternate materials refer to page 12 Flanges: See pages ,9,10,11

Pipe: ASTM A53/A106

Materials of construction may be changed to meet specific

requirements, consult Factory.

Test Pressure is 1.5 times operating pressure.

End Fittings are available in a variety of combinations and materials. See Page 7 for calculations of concurrent movements. Standard NCB Expansion Joints to operate at 650 deg F at pressures indicated.

Standard expansion joints are rated for 2000 cycles for non concurrent movements.

To obtain greater movement or cycle life contact the factory Larger Diameter , higher pressure and temperature expansion joints are available consult factory.

-{NCB EXPANSION JOINTS}-

				No	on-Concu	rrent	S	pring Rate	e	Туре	WW	Туре	FF
Pipe Size	Eff.Area in²	PSI	# CONV	Axial (in)	Lateral (in)	Angular (deg)	Axial (lbs/in)	Lateral (lbs/in)	Angular (in-lb/deg)	O.A.L. inches	Weight (lb)	O.A.L. inches	Weight (lb)
			5	0.52	0.06	9.00	1,391	16,021	111	7.19	7.68	5.06	31.6
			10	1.05	0.25	10.00	695	2,003	56	9.38	8.48	7.25	32.4
	29	50	15	1.57	0.57	10.00	464	593	37	11.56	9.27	9.44	33.2
			20	2.09	1.01	3.50	348	250	28	13.75	10.06	11.63	34.0
			5	0.33	0.04	5.50	4,834	55,686	388	7.2	8.5	5.1	32.4
5	29	150	10	0.65	0.16	9.50	2,417	6,961	194	9.4	9.6	7.3	33.6
			15	0.98	0.35	10.00	1,611	2,062	129	11.6	10.8	9.4	34.7
			20	1.30	0.63	6.00	1,209	870	97	13.8	12.0	11.6	35.9
			5	0.34	0.04	5.50	6,728	76,710	534	7.2	9.8	6.2	59.7
	29		10	0.68	0.16	9.50	3,364	9,589	267	9.4	11.5	8.4	61.4
		300	15	1.02	0.37	8.00	2,243	2,841	178	11.6	13.2	10.6	63.1
			20	1.36	0.66	0.00	1,682	1,199	133	13.8	15.0	12.8	64.9
			5	0.72	0.10	10.00	1,572	12,637	179	9.1	17.1	7.3	85.6
	41	50	10	1.44	0.41	10.00	786	1,580	90	12.3	21.1	10.4	89.6
			15	2.15	0.93	9.50	524	468	60	15.4	25.2	13.5	93.7
			20	2.87	1.65	0.00	393	197	45	18.5	29.2	16.6	97.7
			5	0.44	0.06	6.00	5,272	42,383	602	9.1	12.0	6.3	40.5
6	41	150	10	0.87	0.25	10.00	2,636	5,298	301	12.3	13.3	9.4	41.8
			15	1.31	0.56	10.00	1,757	1,570	201	15.4	14.6	12.5	43.1
			20	1.74	1.00	1.50	1,318	662	150	18.5	15.9	15.6	44.4
			5	0.41	0.06	6.00	11,570	93,415	1,327	9.1	13.2	6.3	41.7
	41	300	10	0.82	0.24	10.00	5,785	11,677	663	12.3	15.2	9.4	43.7
			15	1.24	0.53	10	3857	3460	442	15.4	17.1	12.5	45.6
			20	1.65	0.95	3.5	2893	1460	332	18.5	19.1	15.6	47.6
			5	0.72	0.08	8.00	1,843	24,215	344	9.1	17.6	6.6	63.3
		50	10	1.43	0.32	10.00	921	3,027	172	12.3	19.4	9.8	65.1
	67		15	2.15	0.73	10.00	614	897	115	15.4	21.1	12.9	66.9
			20	2.87	1.29	2.00	461	378	86	18.5	22.9	16.0	68.6
			5	0.62	0.07	7.50	4,747	61,964	880	9.1	20.7	6.6	66.4
			10	1.25	0.28	10.00	2,373	7,745	440	12.3	24.0	9.8	69.7
8	66.7	150	15	1.87	0.63	10.00	1,582	2,295	293	15.4	27.2	12.9	73.0
			20	2.49	1.13	10.00	1,187	968	220	18.5	30.5	16.0	76.3
	66.7		5	0.46	0.05	5	9622	125605	1784	9.1	22.2	8.0	124.0
		300	10	0.91	0.21	8.00	4,811	15,701	892	12.3	26.3	11.1	128.0
			15	1.37	0.46	7.5	3207	4652	595	15.4	30.4	14.3	132.1
			20	1.83	0.83	0.00	2,406	1,963	446	18.5	34.5	17.4	136.2

-[NCB EXPANSION JOINTS]-

				Nc	n-Concu	rrent	S	pring Rate	e	Туре	WW	Туре	FF
Pipe Size	Eff.Area in ²	PSI	# CONV	Axial (in)	Lateral (in)	Angular (deg)	Axial (lbs/in)	Lateral (lbs/in)	Angular (in-lb/deg)	O.A.L. inches	Weight (lb)	O.A.L. inches	
3120			r.						, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	108	50	5 10	1.44 2.89	0.18 0.72	10.00 7.50	1,152 576	12,466 1,558	347 174	16.4 17.3	47.6 48.6	8.3 9.1	91.1 92.1
	100	30	10	4.04	1.40	0.50	411	568	174	20.8	40.0 52.2	9.1 12.6	92.1 95.8
			5	0.82	0.10	7.00	411	50,777	124	12.9	46.0	4.8	95.8 89.5
10	108	150	10	1.65	0.10	10.00	2,347	6,347	707	16.4	40.0 51.8	4.0 8.3	95.4
10	100	150	10	2.30	0.80	4.00	1,676	2,313	505	19.9	57.7	11.8	101.2
			5	0.62	0.08	5	9348	101137	2816	24.25	65.03	16.13	108.55
	108	300	10	1.25	0.31	7.50	4,674	12,642	1,408	16.38	54.63	9.63	178.15
	100	500	14	1.75	0.61	4.00	3,338	4,607	1,006	20.75	63.72	14.00	187.24
		50	4	1.12	0.09	8.50	2,073	48,870	871	15.5	59	7.5375	138
			8	2.25	0.38	10.00	1,037	6,109	435	19	65	11.0375	144
	151.26		12	3.37	0.85	7.50	691	1,810	290	22.5	71	14.5375	150
			16	4.49	1.51	1.50	518	764	218	26	78	18.0375	156
			4	0.75	0.06	5.50	5,382	126,293	2,250	15.5	62	7.5375	141
			8	1.50	0.25	9.50	2,691	15,787	1,125	19	70	11.0375	148
12	150.50	150	12	2.25	0.57	5.50	1,794	4,678	750	22.5	78	14.5375	156
			16	3.00	1.01	0.00	1,345	1,973	563	26	86	18.0375	164
			4	0.57	0.05	4.00	10,704	251,194	4,475	15.5	65	9.25	246
	150.60	300	8	1.13	0.19	7.00	5,352	31,399	2,238	19	75	12.75	255
			12	1.70	0.43	5.50	3,568	9,303	1,492	22.5	85	16.25	265
			16	2.27	0.76	0.00	2,676	3,925	1,119	26	94	19.75	275
			4	1.11	0.09	8.00	2,271	63,605	1,133	15.5	65	8	181
			8	2.23	0.34	10.00	1,135	7,951	567	19	72	11.5	187
		50	12	3.34	0.77	8.50	757	2,356	378	22.5	79	15	194
			16	4.46	1.37	2.50	568	994	283	26	85	18.5	201
	180		4	0.78	0.06	5.50	5,447	152,578	2,718	15.5	69	8	184
			8	1.55	0.24	9.00	2,723	19,072	1,359	19	78	11.5	193
14		150	12	2.33	0.54	5.00	1,816	5,651	906	22.5	86	15	202
			16	3.11	0.96	0.00	1,362	2,384	680	26	95	18.5	211
			4	0.59	0.05	4.00	10,832	303,422	5,406	15.5	72	9.5	344
		300	8	1.17	0.18	6.50	5,416	37,928	2,703	19	83	13	355
			12	1.76	0.41	5.00	3,611	11,238	1,802	22.5	94	16.5	366
			16	2.35	0.72	0.00	2,708	4,741	1,352	26	105	20	377

-{NCB EXPANSION JOINTS}-

				No	on-Concu	rrent	<u>_</u> S	pring Rate	e	Туре	WW	Туре	e FF
Pipe	Eff.Area	PSI	# CONV		Lateral	Angular	Axial	Lateral	Angular				Weight
Size	in²			(in)	(in)	(deg)	(lbs/in)	(lbs/in)	(in-lb/deg)	inches	(lb)	inches	(lb)
		50	4	1.10	0.08	7.00	2,586	92,850	1,654	4	15.5	75	8.5
			8	2.20	0.30	10.00	1,293	11,606	827	8	19.0	82	12
	230.3		12	3.31	0.68	9.50	862	3,439	551	12	22.5	90	15.5
			16	4.41	1.20	3.50	646	1,451	414	16	26.0	98	19
			4	0.77	0.05	4.50	6,210	223,005	3,973	4	15.5	79	8.5
16	230.3	150	8	1.54	0.21	8.00	3,105	27,876	1,987	8	19.0	89	12
			12	2.31	0.47	6.00	2,070	8,259	1,324	12	22.5	99	15.5
			16	3.08	0.84	1.00	1,553	3,484	993	16	26.0	109	19
			4	0.72	0.05	4.50	14,027	503,725	8,975	4	15.5	95	10
			8	1.44	0.20	7.50	7,014	62,966	4,487	8	19.0	115	13.5
	230.3	300	12	2.16	0.44	7.50	4,676	18,656	2,992	12	22.5	135	17
			16	2.88	0.78	2.50	3,507	7,871	2,244	16	26.0	156	20.5
			4	1.25	0.08	7.00	1,808	80,727	1,438	15.5	81.2	8.875	251
	286.4	50	8	2.50	0.31	10.00	904	10,091	719	19	88.1	12.375	258
			12	3.75	0.69	4.00	603	2,990	479	22.5	95.0	15.875	265
			16	5.00	1.22	0.00	452	1,261	360	26	102.0	19.375	272
			4	0.76	0.05	4.00	6,971	312,218	5,563	15.5	88.2	8.875	258
18	287.3	150	8	1.53	0.19	7.50	3,486	39,027	2,781	19	99.6	12.375	270
			12	2.29	0.42	7.00	2,324	11,564	1,854	22.5	111.0	15.875	281
			16	3.05	0.74	2.00	1,743	4,878	1,391	26	122.4	19.375	292
			4	0.71	0.04	4.00	15,746	705,221	12,565	15.5	106.3	10.5	596
	287.3	300	8	1.43	0.17	7.00	7,873	88,153	6,282	19	129.1	14	619
			12	2.14	0.39	8.50	5,249	26,119	4,188	22.5	152.0	17.5	642
			16	2.86	0.70	3.00	3,936	11,019	3,141	26	174.8	21	665
			2	0.76	0.02	4.00	2,759	610,318	2,718	13.75	87.8	7.5	319
			6	2.29	0.19	10.00	920	22,604	906	17.25	97.0	11	328
	355	50	10	3.81	0.52	3.50	552	4,883	544	20.75	106.1	14.5	337
			14	5.33	1.02	0	394	1,779	388	24.25	115.2	18	347
			2	0.44	0.01	2.00	11,483	2,539,661	11,312	13.75	93.3	7.5	325
20		150	6	1.33	0.11	6.00	3,828	94,062	3,771	17.25	107.8	11	339
	355		10	2.22	0.31	7.00	2,297	20,317	2,262	20.75	122.3	14.5	354
			14	3.11	0.60	2.00	1,640	7,404	1,616	24.25	136.7	18	368
			2	0.42	0.01	2.00	25,623	5,667,216	25,243	13.75	108.1	9.25	679
			6	1.26	0.10	6.00	8,541	209,897	8,414	17.25	137.0	12.75	708
	355	300	10	2.10	0.29	8.00	5,125	45,338	5,049	20.75	165.9	16.25	737
			14	2.94	0.56	3.00	3,660	16,522	3,606	24.25	194.9	19.75	766

-[NCB EXPANSION JOINTS]-

Pfi Are PSI # CONV Axial (n) Lateral (n) Axial (deg) Lateral (bb/m) Angula (bb/m) Angula					No	on-Concu	rrent	S	pring Rate	e	Туре	ww _	Туре	FF
Size in? in (in) <	Pipe	Eff.Area	PSI	# CONV	Axial	Lateral	Angular	Axial	Lateral	Angular	O.A.L.	Weight	O.A.L.	Weight
425 50 8 3.33 0.30 7.00 7.57 1.2,25 8.93 1.9 1.15 1.2,5 1.55 1.					(in)	(in)	(deg)	(lbs/in)	(lbs/in)		inches	(lb)	inches	(lb)
1 1				4	1.51	0.08	6.50	1,514	100,197	1,785	15.5	105	9.75	333
14 5.30 0.93 0.50 4.32 2.337 5.10 2.42 1.30 1.30 1.30 3.30 4 0.89 0.04 4.00 6.302 17.188 7.432 1.55 1.40 9.75 9.75 425 10 6.80 1.77 0.18 7.00 3.151 5.214 3.716 1.92 1.52 1.40 1.30 3.21 425 425 1.40 0.84 2.50 1.601 9.729 2.125 1.80 1.80 9.72 425 4.8 0.47 0.50 7.031 16.347 8.292 1.90 1.50 1.80 9.70 414 1.20 0.61 3.50 4.68 1.47 1.634 1.624 1.50 1.50 1.61 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50		425	50	8	3.03	0.30	7.00	757	12,525	893	19	115	13.25	343
4 0.89 0.04 4.00 6.302 417.138 7.432 15.5 11.4 9.75 3.75 425 12 2.66 0.40 4.50 2.101 15.45 3.716 19 13.0 13.25 3.25 2425 12 2.66 0.40 3.50 14.062 90,780 16.684 15.8 18.8 15.5 90 22 425 3.00 8.4 0.40 3.50 14.062 90,780 16.684 15.8 18.8 15.5 90 24 4.5 0.44 0.40 3.50 14.062 90,780 16.584 15.8 18.8 15.5 90 24 4.25 1.50 0.17 6.50 7.501 16.47 12.82 13.8 14.5 90 501 50 1.2 4.51 0.63 2.50 1.69 4.764 17.64 12.5 11.1 10.5 4.5 501 50 1				12	4.54	0.68	2.00	505	3,711	595	22.5	125	16.75	353
425 8 1.77 0.18 7.00 3,151 5.1/2 3.716 19 19.0 13.25 3.25 425 12 2.66 0.40 4.50 2,101 15,450 2,213 2,25 1,40 1,60 3,75 22 425 14 3.10 0,54 2,50 1,801 9,729 2,123 2,52 1,50 1,60 3,75 1,70 1,50 5,70 24 425 1,4 0,40 0,51 0,50 4,687 3,4,73 5,528 2,52 1,50 1,50 9,70 14 2,93 0,51 3,50 4,687 3,4,73 5,528 2,52 1,50				14	5.30	0.93	0.50	432	2,337	510	24.25	130	18.5	358
425 1 1 2 1				4	0.89	0.04	4.00	6,302	417,138	7,432	15.5	114	9.75	342
1 1 3.10 0.54 2.50 1,801 9,729 2,123 2,423 1,54 1,55 1			150	8	1.77	0.18	7.00	3,151	52,142	3,716	19	130	13.25	358
22 425 300 84 0.64 0.04 3.50 14,062 99,780 16,584 1.55 1.8 1.5 9 22 425 300 8 1.67 0.17 6.50 7,031 116,347 8,292 19 100 15 9 12 2.51 0.38 5.50 4,687 34,473 5,528 2.25 2.02 18.5 9 14 2.93 0.51 3.50 4,018 21,09 4,738 24.5 10.1 10.5 43 501 50 12 4.51 0.62 2.50 12.5 133 17.5 46 46 501 12 4.51 0.62 2.50 130 4.62 1607 1,16 6.70 3,11 6,051 2,417 19.5 133 1,55 141 1,55 145 145 46 201 14 5.26 0.50 3,00 2,527 135		425		12	2.66	0.40	4.50	2,101	15,450	2,477	22.5	146	16.75	374
22 425 30 8 1.67 0.17 6.50 7.01 10.347 8.292 19 170 15 9 12 2.51 0.38 5.50 4.687 34.473 5.528 2.25 2.02 18.5 9 14 2.93 0.51 3.50 4.018 21.709 4.738 24.55 111 10.5 4.5 14 2.93 0.51 3.50 4.018 21.709 4.738 24.55 131 10.5 4.5 150 501 50 4.4 1.50 0.70 6.00 1.647 12.8616 2.292 15.5 111 10.5 4.5 1501 501 526 0.83 1.00 4.71 3000 655 4.245 139 19.5 4.4 161 12 2.65 0.37 5.00 3.5467 9.544 15.5 111 10.5 4.2 201 12 2.65 <td< td=""><td></td><td></td><td></td><td>14</td><td>3.10</td><td>0.54</td><td>2.50</td><td>1,801</td><td>9,729</td><td>2,123</td><td>24.25</td><td>154</td><td>18.5</td><td>382</td></td<>				14	3.10	0.54	2.50	1,801	9,729	2,123	24.25	154	18.5	382
1 1 2 1 0.38 5.50 4,687 34,473 5,528 2.25 2.02 1.85 9.9 14 2.93 0.51 3.50 4,018 21,009 4,738 24.25 218 20.5 9.9 501 5.0 1.20 1.50 0.07 6.00 1,647 128,616 2.222 15.5 111 10.5 4.9 501 5.0 1.22 4.51 0.63 2.50 824 16,07 1,146 19 122 14 44 501 1.50 1.22 4.51 0.63 2.50 3.567 9.544 150 121 1.50 124 1.4 44 501 1.50 1.22 2.65 0.37 5.00 2.267 19.40 3.181 2.25 164 1.55 1.5 501 1.50 1.22 2.65 0.37 5.00 1.5,99 1.5,91 1.5 1.5 1.5				4	0.84	0.04	3.50	14,062	930,780	16,584	15.5	138	11.5	914
Image: borner	22	425	300	8	1.67	0.17	6.50	7,031	116,347	8,292	19	170	15	946
1 4 1.50 0.07 6.00 1.647 128,616 2.292 15.5 111 10.5 4.4 501 50 12 4.51 0.63 2.50 549 4,64 764 764 22.5 133 17.5 4.5 24 14 5.26 0.85 1.00 471 3,000 655 24.25 133 17.5 4.5 24 4.51 0.63 2.50 5.49 4,764 764 2.55 133 17.5 4.5 24 4.8 0.44 0.88 0.04 3.50 6.861 535,667 9.544 1.55 121 10.5 4.64 2501 150 122 2.65 0.37 5.00 2.287 19.40 2.127 2.45 164 19.55 147 1.66 1.75 1.66 1.530 1.949 2.125 1.55 1.75 1.66 1.530 1.949 2.125 1.55 1.67 <td></td> <td></td> <td></td> <td>12</td> <td>2.51</td> <td>0.38</td> <td>5.50</td> <td>4,687</td> <td>34,473</td> <td>5,528</td> <td>22.5</td> <td>202</td> <td>18.5</td> <td>978</td>				12	2.51	0.38	5.50	4,687	34,473	5,528	22.5	202	18.5	978
8 8 3.01 0.28 7.50 8.24 16.077 1.166 19 122 14 4.4 501 50 12 4.51 0.63 2.50 549 4,764 764 22.5 133 17.5 4.4 24 14 5.26 0.85 1.00 471 3000 655 24.25 133 17.5 4.4 24				14	2.93	0.51	3.50	4,018	21,709	4,738	24.25	218	20.25	994
501 50 12 4.51 0.63 2.50 549 4.764 764 22.5 133 17.5 4.75 24 14 5.26 0.85 1.00 471 3.000 655 24.55 133 10.5 4.25 24 A 0.88 0.04 3.50 6.861 535,667 9.544 15.5 121 10.5 4.4 24 501 150 12.2 2.65 0.37 5.00 2.287 19.840 3.181 2.5.5 164 10.5 4.4 501 150 12.0 0.50 3.00 1.509 1.5.4 4.17 1.16 4.2 4 .04 0.39 0.50 3.00 1.5.09 1.19.19 2.1295 1.5.7 1.18.7 1.1.5 4.4 501 .050 .08 .0.50 1.5.09 1.5.9 1.4 4.2.5 1.2.5 1.5.7 1.5.7 1.5.7 1.5.7 1.5.7 <				4	1.50	0.07	6.00	1,647	128,616	2,292	15.5	111	10.5	437
1 1 5.26 0.85 1.00 471 3.000 655 24.25 1.30 19.25 4.25 24 A 0.84 0.04 3.50 6.861 35.667 9.544 1.55 1.21 10.5 4.4 24 A 150 122 2.65 0.37 5.00 2.287 19.840 3.181 2.55 1.56 1.75 4.6 501 150 122 2.65 0.37 5.00 2.287 19.840 3.181 2.55 1.56 1.75 4.6 101 122 2.65 0.37 5.00 1.264 1.272 2.45 1.64 1.57				8	3.01	0.28	7.50	824	16,077	1,146	19	122	14	447
24 A 0.88 0.04 3.50 6,861 535,667 9,544 1.55 1.21 10.5 4.4 24 501 1.50 1.22 0.65 0.37 5.00 2.287 19,840 3,181 2.25 15.6 1.75 4.6 501 1.2 2.65 0.37 5.00 2.287 19,840 3,181 2.25 1.64 1.75 4.6 501 1.4 3.09 0.50 3.00 1,660 1,2494 2,727 24.5 1.64 1.9.5 4.6 501 501 4.4 0.83 0.04 3.50 1,5309 1,16,4 1.05 1.16 1.05 1.16 1.05 1.16 1.05 1.16 1.05 1.16 1.05 1.16 1.05 1.16 1.05 1.16 1.05 1.16 1.05 1.16 1.05 1.16 1.05 1.16 1.05 1.16 1.05 1.16 1.05 1.16 1.05 <td></td> <td>501</td> <td>50</td> <td>12</td> <td>4.51</td> <td>0.63</td> <td>2.50</td> <td>549</td> <td>4,764</td> <td>764</td> <td>22.5</td> <td>133</td> <td>17.5</td> <td>458</td>		501	50	12	4.51	0.63	2.50	549	4,764	764	22.5	133	17.5	458
24 8 1.77 0.16 6.50 3.431 66.958 4.772 19 138 14 4.75 501 150 120 2.65 0.37 5.00 2.287 19.840 3.181 22.5 156 17.5 48 501 150 14 3.09 0.50 3.00 1.960 12.494 2.727 24.25 164 19.25 49 501 3.00 8.8 0.04 3.50 15,309 1.195,194 21.295 15.5 147 11.875 10 501 3.00 8.8 0.04 3.50 5.103 44.266 7.098 22.5 21.7 18.875 11 10 12 2.02 0.47 4.00 3,531 579.236 7.582 15 446 8.88 8.2 11 773.4 5 6.6 2.31 0.15 7.50 1.765 72.404 3.791 18 459 1.88 8.2				14	5.26	0.85	1.00	471	3,000	655	24.25	139	19.25	464
501 150 120 2.65 0.37 5.00 2.287 19.840 3.181 2.25 1.56 1.7.5 4.8 501 14 3.09 0.50 3.00 1,960 12,494 2,727 24.25 164 19.25 45 501 3.00 8.8 0.67 3.00 1,960 12,494 2,727 24.25 164 19.25 45 501 3.00 8.8 0.67 3.00 1,95,194 21,295 15.5 147 11.85 10 10 12 2.50 0.35 6.00 5,103 44,266 7,098 22.5 217 18.85 11 114 2.92 0.47 4.00 4,374 27,876 6.084 24.25 234 20.625 11 14 2.92 0.47 4.00 3,531 579,236 7,582 15 446 8.88 8.25 175 6 2.31 0.15 <				4	0.88	0.04	3.50	6,861	535,667	9,544	15.5	121	10.5	446
1 1 3.09 0.50 3.00 1,960 1,2494 2,727 24.25 164 19.25 4 501 300 8 0.63 0.04 3.50 15,309 1,195,194 21,295 15.5 147 11.875 10 501 300 8 1.67 0.15 6.00 7,655 149,399 10,647 19 182 15.375 10 12 2.50 0.35 6.00 5,103 44,266 7,098 22.5 217 18.875 11 14 2.92 0.47 4.00 4,374 27,876 6,084 24.25 234 20.625 11 14 2.92 0.47 4.00 3,531 579,236 7,582 15 446 8.88 82 150 6 2.31 0.15 7,50 1,765 72,404 3,791 18 459 11.88 82 160 6 0.32 0.59 <td>24</td> <td></td> <td></td> <td>8</td> <td>1.77</td> <td>0.16</td> <td>6.50</td> <td>3,431</td> <td>66,958</td> <td>4,772</td> <td>19</td> <td>138</td> <td>14</td> <td>464</td>	24			8	1.77	0.16	6.50	3,431	66,958	4,772	19	138	14	464
A A 0.83 0.04 3.50 15,309 1,195,194 21,295 15.5 147 11.875 10 501 300 8 1.67 0.15 6.00 7,655 149,399 10,647 19 182 15.375 10 12 2.50 0.35 6.00 5,103 44,266 7,098 22.5 217 18.875 11 14 2.92 0.47 4.00 4,374 27,876 6,084 24.25 234 20.625 11 14 2.92 0.47 4.00 3,531 579,236 7,582 15 446 8.88 82 15 66 2.31 0.15 7.50 1,765 72,404 3,791 18 459 11.88 82 12 4.62 0.59 4.50 883 9,051 1,896 24 486.34 17.88 82 30 773.4 150 6 1.32 0.08 <td></td> <td>501</td> <td>150</td> <td>12</td> <td>2.65</td> <td>0.37</td> <td>5.00</td> <td>2,287</td> <td>19,840</td> <td>3,181</td> <td>22.5</td> <td>156</td> <td>17.5</td> <td>481</td>		501	150	12	2.65	0.37	5.00	2,287	19,840	3,181	22.5	156	17.5	481
501 300 8 1.67 0.15 6.00 7,655 149,399 10,647 19 182 15,375 10 12 2.50 0.35 6.00 5,103 44,266 7,098 22.5 217 18.875 11 14 2.92 0.47 4.00 4,374 27,876 6,084 24.25 234 20,625 11 773.4 50 6.6 2.31 0.15 7,500 17,655 72,404 3,791 18 459 11.88 88 82 777.4 50 6.6 2.31 0.15 7,500 1,765 72,404 3,791 18 459 11.88 88 82 12 4.62 0.59 4.50 883 9,051 1,896 24 486.34 17.88 82 12 4.62 0.59 4.50 883 9,051 1,896 24 486.34 17.88 82 12 4.62 <td></td> <td></td> <td></td> <td>14</td> <td>3.09</td> <td>0.50</td> <td>3.00</td> <td>1,960</td> <td>12,494</td> <td>2,727</td> <td>24.25</td> <td>164</td> <td>19.25</td> <td>490</td>				14	3.09	0.50	3.00	1,960	12,494	2,727	24.25	164	19.25	490
12 2.50 0.35 6.00 5,103 44,26 7,098 22.5 217 18.875 11 14 2.92 0.47 4.00 4,374 27,876 6,084 24.25 234 20.625 11 773.4 50 6.0 2.31 0.047 4.00 3,531 579,236 7,582 15 446 8.88 82 773.4 50 6.0 2.31 0.15 7,50 1,765 72,404 3,791 18 459 11.88 83 9 3.47 0.33 9.00 1,177 21,453 2,527 21 472.94 14.88 84 12 4.62 0.59 4.50 883 9,051 1,896 24 486.34 17.88 84 14 12 4.62 0.59 4.50 883 343,225 17.971 18 482.73 11.88 84 30 773.4 12 2.63 0.34<				4	0.83	0.04	3.50	15,309	1,195,194	21,295	15.5	147	11.875	1037
1 1 2.92 0.47 4.00 4,374 27,876 6,084 24.25 234 20,625 1 1 3 1.16 0.04 4.00 3,531 579,236 7,582 15 446 8.88 82 773.4 50 6 2.31 0.15 7,50 1,765 72,404 3,791 18 459 11.88 82 9 3.47 0.33 9.00 1,177 21,453 2,527 21 472.94 14.88 84 12 4.62 0.59 4.50 883 9.051 1,896 24 486.34 17.88 84 12 4.62 0.59 4.50 883 9.051 1,896 24 486.34 17.88 84 12 4.62 0.59 4.50 883 9.51 1,896 14 480.33 14.88 84 12 4.62 0.59 1.50 1.60 5,579 <		501	300	8	1.67	0.15	6.00	7,655	149,399	10,647	19	182	15.375	1071
A B B				12	2.50	0.35	6.00	5,103	44,266	7,098	22.5	217	18.875	1106
773.4 50 6 2.31 0.15 7.50 1.765 72,40 3.791 18 459 11.88 83 9 3.47 0.33 9.00 1,177 21,453 2,527 21 472.94 14.88 84 12 4.62 0.59 4.50 883 9.051 1.896 2.4 486.34 17.88 84 4 150 6 0.23 0.06 0.02 2.00 16,736 2.745,801 35,942 15 460.3 8.88 83 30 773.4 150 6 1.32 0.08 4.00 8.368 343,225 17,971 18 482.73 11.88 88 30 773.4 12 2.63 0.34 7.00 4,184 42.903 8.986 24 526.93 17.88 9 30 773.4 12 2.63 0.34 7.00 4,184 42.903 8.986 24 526.93 17.88 9 30 773.4 12 2.63 0.32 2.5				14	2.92	0.47	4.00	4,374	27,876	6,084	24.25	234	20.625	1123
1 1				3	1.16	0.04	4.00	3,531	579,236	7,582	15	446	8.88	822
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		773.4	50	6	2.31	0.15	7.50	1,765	72,404	3,791	18	459	11.88	835
3 0.66 0.02 2.00 16,736 2,745,801 35,942 15 460.63 8.88 83 15 6 1.32 0.08 4.00 8,368 343,225 17,971 18 482.73 11.88 83 30 773.4 12 2.63 0.34 7.00 4,184 42,903 8,986 24 526.93 17.88 99 773.1 8 3.3 0.78 0.22 2.5 18656 3060837 40066 15 482.71 10.24 12 7773.1 6 1.57 0.10 5 9328 382605 20033 18 518.25 13.24 18 225 9 2.35 0.22 7 6219 11364 13355 21 553.79 16.24 18				9	3.47	0.33	9.00	1,177	21,453	2,527	21	472.94	14.88	849
150 6 1.32 0.08 4.00 8,368 343,225 17,971 18 482.73 11.88 85 30 773.4 9 1.98 0.19 6.00 5,579 101,696 11,981 21 504.83 14.88 88 30 773.4 12 2.63 0.34 7.00 4,184 42,903 8,986 24 526.93 17.88 90 773.1 6 1.57 0.10 5 9328 382605 20033 18 518.25 13.24 18 7773.1 25 9 2.35 0.22 7 6219 11364 13355 21 553.79 16.24 18				12	4.62	0.59	4.50	883	9,051	1,896	24	486.34	17.88	862
30 773.4 9 1.98 0.19 6.00 5,579 101,696 11,981 21 504.83 14.88 88 30 773.4 12 2.63 0.34 7.00 4,184 42,903 8,986 24 526.93 17.88 90 773.1 3 0.78 0.02 2.5 18656 3060837 40066 15 482.71 10.24 17 7773.1 6 1.57 0.10 5 9328 382605 20033 18 518.25 13.24 18 225 9 2.35 0.22 7 6219 11364 13355 21 553.79 16.24 18				3	0.66	0.02	2.00	16,736	2,745,801	35,942	15	460.63	8.88	837
30 773.4 12 2.63 0.34 7.00 4,184 42,903 8,986 24 526.93 17.88 90 773.1 3 0.78 0.02 2.5 18656 3060837 40066 15 482.71 10.24 17 773.1 6 1.57 0.10 5 9328 382605 20033 18 518.25 13.24 18 225 9 2.35 0.22 7 6219 11364 13355 21 553.79 16.24 18			150	6	1.32	0.08	4.00	8,368	343,225	17,971	18	482.73	11.88	859
773.1 3 0.78 0.02 2.5 18656 3060837 40066 15 482.71 10.24 17 773.1 6 1.57 0.10 5 9328 382605 20033 18 518.25 13.24 18 225 9 2.35 0.22 7 6219 113364 13355 21 553.79 16.24 18				9	1.98	0.19	6.00	5,579	101,696	11,981	21	504.83	14.88	881
773.1 6 1.57 0.10 5 9328 382605 20033 18 518.25 13.24 18 225 9 2.35 0.22 7 6219 113364 13355 21 553.79 16.24 18	30	773.4		12	2.63	0.34	7.00	4,184	42,903	8,986	24	526.93	17.88	903
225 9 2.35 0.22 7 6219 113364 13355 21 553.79 16.24 18				3	0.78	0.02	2.5	18656	3060837	40066	15	482.71	10.24	1799
		773.1		6	1.57	0.10	5	9328	382605	20033	18	518.25	13.24	1834
			225	9	2.35	0.22	7	6219	113364	13355	21	553.79	16.24	1870
12 3.14 0.40 6 4664 47826 10017 24 589.34 19.24 19				12	3.14	0.40	6	4664	47826	10017	24	589.34	19.24	1905

-{NCB EXPANSION JOINTS}-

				No	n-Concu	rrent	S	pring Rate	e	Туре	WW	Туре	FF
Pipe Size	Eff.Area in²	PSI	# CONV	Axial (in)	Lateral (in)	Angular (deg)	Axial (lbs/in)	Lateral (lbs/in)	Angular (in-lb/deg)	O.A.L. inches	Weight (lb)	O.A.L. inches	
			3	1.31	0.04	4.00	2,312	428,460	5,609	15	472	9.38	1029
			6	2.62	0.16	7.50	1,156	53,557	2,804	18	483	12.38	1041
	873.6	50	9	3.93	0.35	4.50	771	15,869	1,870	21	495	15.38	1052
			12	5.24	0.63	1.50	578	6,695	1,402	24	506	18.38	1064
			3	1.06	0.03	3.50	8,090	1,501,816	19,659	15	499	9.38	1057
			6	2.13	0.13	6.00	4,045	187,727	9,829	18	528	12.38	1086
32	874.8	150	9	3.19	0.29	5.50	2,697	55,623	6,553	21	557	15.38	1114
			12	4.25	0.51	2.50	2,022	23,466	4,915	24	585	18.38	1143
			3	0.78	0.02	2.50	19,865	3,687,815	48,273	15	515	10.76	2072
			6	1.56	0.09	4.50	9,932	460,977	24,137	18	553	13.76	2110
	874.8	225	9	2.35	0.21	6.50	6,622	136,586	16,091	21	591	16.76	2148
			12	3.13	0.38	6.50	4,966	57,622	12,068	24	629	19.76	2186
			3	1.28	0.04	4.00	2,533	526,810	6,896	15	501	9.5	1100
			6	2.57	0.15	7.00	1,266	65,851	3,448	18	513	12.5	1112
	980.6	50	9	3.85	0.33	4.50	844	19,511	2,299	21	525	15.5	1125
			12	5.13	0.58	2.00	633	8,231	1,724	24	537	18.5	1137
			3	1.01	0.03	3.00	9,472	1,970,301	25,791	15	529	9.5	1129
			6	2.01	0.11	5.50	4,736	246,288	12,896	18	558	12.5	1158
34	980.6	150	9	3.02	0.26	6.50	3,157	72,974	8,597	21	587	15.5	1187
			12	4.02	0.46	3.50	2,368	30,786	6,448	24	617	18.5	1216
			3	0.62	0.02	2.00	42,857	8,938,511	117,005	15	563	11	2373
			6	1.25	0.07	3.50	21,429	1,117,314	58,502	18	614	14	2423
	983.2	225	9	1.87	0.16	5.50	14,286	331,056	39,002	21	664	17	2473
			12	2.50	0.28	6.50	10,714	139,664	29,251	24	714	20	2523
			3	1.14	0.03	3.00	4,216	981,441	12,847	15	501	9.5	1100
	1097	50	6	2.29	0.12	6.00	2,108	122,680	6,424	18	513	12.5	1112
			9	3.43	0.28	8.50	1,405	36,350	4,282	21	525	15.5	1125
			12	4.57	0.49	5.50	1,054	15,335	3,212	24	537	18.5	1137
			3	1.06	0.03	3.00	9,071	2,111,790	27,643	15	529	9.5	1129
	1097		6	2.11	0.11	5.50	4,535	263,974	13,822	18	558	12.5	1158
36		150	9	3.17	0.25	6.00	3,024	78,214	9,214	21	587	15.5	1187
			12	4.22	0.45	3.00	2,268	32,997	6,911	24	617	18.5	1216
			3	0.62	0.02	1.50	45,321	10,551,454	138,118	15	563	11	2909
	1097	225	6	1.25	0.07	3.50	22,661	1,318,932	69,059	18	614	14	3000
			9	1.87	0.15	5.00	15,107	390,795	46,039	21	664	17	3090
			12	2.49	0.27	6.50	11,330	164,866	34,530	24	714	20	3180

-[NCB EXPANSION JOINTS]-

				No	on-Concu	rrent	S	pring Rate	e	Typ <u>e</u>	WW	Туре	FF
Pipe	Eff.Area	PSI	# CONV		Lateral	Angular	Axial	Lateral	Angular		Weight		Weight
Size	in²			(in)	(in)	(deg)	(lbs/in)	(lbs/in)	(in-lb/deg)	inches	(lb)	inches	(lb)
			3	1.14	0.03	3.00	4,442	1,147,719	15,024	15	565	9.88	1468
			6	2.28	0.12	6.00	2,221	143,465	7,512	18	582	12.88	1485
			9	3.43	0.26	8.00	1,481	42,508	5,008	21	599	15.88	1502
	1218	50	12	4.57	0.46	5.50	1,110	17,933	3,756	24	616	18.88	1519
			3	1.05	0.03	2.50	9,557	2,469,515	32,326	15	593	9.88	1496
			6	2.11	0.11	5.50	4,779	308,689	16,163	18	627	12.88	1530
38	1218	150	9	3.16	0.24	6.00	3,186	91,464	10,775	21	661	15.88	1564
			12	4.22	0.43	3.00	2,389	38,586	8,081	24	695	18.88	1598
			3	0.62	0.02	1.50	47,783	12,346,947	161,621	15	630	11.5	1482
	1218	225	6	1.25	0.06	3.00	23,891	1,543,368	80,811	18	686	14.5	1538
			9	1.87	0.14	4.50	15,928	457,294	53,874	21	742	17.5	1594
			12	2.49	0.25	6.00	11,946	192,921	40,405	24	798	20.5	1650
			3	1.20	0.03	3.00	4,546	1,024,849	16,979	15.375	595	10.495	1579
			6	2.40	0.13	6.00	2,273	128,106	8,489	18.75	612	13.87	1596
	1345	50	9	3.60	0.29	8.00	1,515	37,957	5,660	22.125	629	17.245	1614
			12	4.80	0.52	5.00	1,137	16,013	4,245	25.5	647	20.62	1631
			3	0.84	0.02	2.00	23,987	5,407,477	89,586	15.375	643	10.495	1627
			6	1.68	0.09	4.00	11,993	675,935	44,793	18.75	689	13.87	1673
40	1345	150	9	2.52	0.21	6.00	7,996	200,277	29,862	22.125	735	17.245	1720
			12	3.37	0.37	7.50	5,997	84,492	22,396	25.5	781	20.62	1766
			3	0.51	0.01	1.00	100,472	22,649,711	375,238	15.375	686	12.375	1800
	1345	225	6	1.02	0.06	2.50	50,236	2,831,214	187,619	18.75	757	15.75	1871
			9	1.53	0.12	4.00	33,491	838,878	125,079	22.125	828	19.125	1942
			12	2.04	0.22	5.00	25,118	353,902	93,809	25.5	899	22.5	2013
			3	1.32	0.03	3.00	3,125	771,970	12,789	15.375	618	10.995	1805
	1482	50	6	2.63	0.14	6.00	1,562	96,496	6,395	18.75	633	14.37	1819
			9	3.95	0.31	5.00	1,042	28,591	4,263	22.125	647	17.745	1833
			12	5.27	0.55	2.00	781	12,062	3,197	25.5	661	21.12	1848
			3	0.90	0.02	2.00	22,135	5,499,780	91,115	15.375	678	10.995	1864
			6	1.81	0.09	4.50	11,067	687,473	45,557	18.75	729	14.37	1915
42	1482	150	9	2.71	0.21	6.00	7,378	203,696	30,372	22.125	780	17.745	1966
			12	3.61	0.37	7.50	5,534	85,934	22,779	25.5	831	21.12	2018
			3	0.55	0.01	1.00	92,334	22,942,087	380,081	15.375	724	12.755	2031
	1482	225	6	1.10	0.06	2.50	46,167	2,867,761	190,041	18.75	803	16.13	2110
			9	1.65	0.13	4.00	30,778	849,707	126,694	22.125	882	19.505	2189
			12	2.20	0.23	5.00	23,083	358,470	95,020	25.5	961	22.88	2268

-{NCB EXPANSION JOINTS}-

				No	n-Concu	rrent	9	pring Rate	e	Туре	WW	Туре	FF
Pipe Size	Eff.Area in²	PSI	# CONV	Axial (in)	Lateral (in)	Angular (deg)	Axial (lbs/in)	Lateral (lbs/in)	Angular (in-lb/deg)	O.A.L. inches	Weight (lb)	O.A.L. inches	Weight (lb)
			3	1.28	0.03	3.00	4,410	1,199,089	19,865	15.375	655	11.375	2013
	1622	50	6	2.55	0.13	5.50	2,205	149,886	9,933	18.75	675	14.75	2033
			9	3.83	0.28	7.50	1,470	44,411	6,622	22.125	696	18.125	2054
			12	5.10	0.51	4.50	1,103	18,736	4,966	25.5	716	21.5	2074
			3	0.90	0.02	2.00	23,154	6,295,162	104,292	15.375	710	11.375	2068
			6	1.80	0.09	4.00	11,577	786,895	52,146	18.75	764	14.75	2122
44	1622	150	9	2.71	0.20	6.00	7,718	233,154	34,764	22.125	817	18.125	2175
			12	3.61	0.36	7.00	5,789	98,362	26,073	25.5	871	21.5	2229
			3	0.55	0.01	1.00	96,632	26,271,999	435,248	15.375	759	13.135	2247
	1622	225	6	1.10	0.05	2.50	48,316	3,284,000	217,624	18.75	842	16.51	2330
			9	1.65	0.12	3.50	32,211	973,037	145,083	22.125	924	19.885	2412
			12	2.20	0.22	5.00	24,158	410,500	108,812	25.5	1007	23.26	2495
			3	1.27	0.03	3.00	4,604	1,364,233	22,601	15.375	685	11.495	2155
	1767	50	6	2.55	0.12	5.50	2,302	170,529	11,301	18.75	706	14.87	2176
			9	3.82	0.27	7.50	1,535	50,527	7,534	22.125	727	18.245	2197
			12	5.10	0.48	4.50	1,151	21,316	5,650	25.5	748	21.62	2218
			3	0.90	0.02	2.00	24,173	7,163,455	118,677	15.375	742	11.495	2212
			6	1.80	0.09	4.00	12,087	895,432	59,338	18.75	798	14.87	2268
46	1767	150	9	2.70	0.19	5.50	8,058	265,313	39,559	22.125	854	18.245	2324
			12	3.61	0.34	7.00	6,043	111,929	29,669	25.5	911	21.62	2380
			3	0.55	0.01	1.00	100,927	29,908,442	495,493	15.375	793	13.495	2613
	1767	225	6	1.10	0.05	2.50	50,463	3,738,555	247,746	18.75	880	16.87	2700
			9	1.65	0.12	3.50	33,642	1,107,720	165,164	22.125	966	20.245	2786
			12	2.20	0.21	4.50	25,232	467,319	123,873	25.5	1053	23.62	2873
			3	1.27	0.03	2.50	4,796	1,543,616	25,573	15.375	715	11.875	2406
	1920	50	6	2.55	0.12	5.00	2,398	192,952	12,787	18.75	737	15.25	2428
			9	3.82	0.26	7.00	1,599	57,171	8,524	22.125	759	18.625	2450
			12	5.09	0.46	4.50	1,199	24,119	6,393	25.5	781	22	2472
			3	0.71	0.02	1.5	51121.8	16453703.78	272588	15.375	798	11.875	2490
48	1920	150	6	1.43	0.06	3	25560.9	2056712.972	136294	18.75	871	15.25	2563
			9	2.14	0.15	4.5	17040.6	609396.4361	90863	22.125	944	18.625	2635
			12	2.85	0.26	5.5	12780.4	257089.1215	68147	25.5	1016	22	2708
			3	0.55	0.01	1	105218.4	33864810.4	561038	15.375	828	13.875	2909
	1920	225	6	1.10	0.05	2	52609.2	4233101.3	280519	18.75	918	17.25	3000
			9	1.65	0.11	3.5	35072.8	1254252.237	187013	22.125	1008	20.625	3090
			12	2.19	0.20	4.5	26304.6	529137.6625	140260	25.5	1099	24	3180

FREE FLEXING EXPANSION JOINTS

Senior Flexonics Canada low pressure (50 psi), Free Flexing expansion joints absorb pipe movement under pressure. Widely used in such applications as process and steam lines, ventilating lines, pump suction and discharge lines, turbine-to-condenser connections, fuel supply lines and bulkhead seals. Available with either Van Stoned flanges (FSF) or butt-weld ends (FSW) attached.

Dual expansion joints are available for applications where movement is greater than can be absorbed by a single unit. Contact factory for design information.

How to order: Example P/N

DIA	STYLE	ends	PRESSURE	CONS	LINER	COVER
6	FSF	VV	50	8	L	С

MATERIALS OF CONSTRUCTION

- BELLOWS: ASTM A240 T304
- PIPE: ASTM A53/A106
 50 lb. Series: Sch. 40
 150 lb. Series: Sch. 40
 300 lb. Series: Sch. 40
- FLANGES: A516-70 Plate (Std) ASTM A105 (Opt)
 50 lb. Series: 150 lb. ANSI B16.5 R.F.S.O.
 150 lb. Series: 150 lb. ANSI B16.5 R.F.S.O.
 300 lb. Series: 300 lb. ANSI B16.5 R.F.S.O.
- COVERS: Carbon Steel
- TIE RODS: Carbon Steel
- LINERS: 300 Series Stainless Steel
- 1. Rated cycle life is 2000 cycles per EJMA 8th edition for any one movement tabulated.
- 2. To combine axial, lateral movements, refer to page 7.

FREE FLEXING DATA

	SINGLE
Size Range	3" to 48"* NPS
Allowable Pressure Stainless Steel Bellows	Vacuum to 50 psig
Temperature Limits Stainless Steel Bellows	-20F to 800F. **
Axial Traverse	To 7 1/2" (depending on size)
Lateral Motion	Up to 1 3/4" (depending on size)

- * For sizes larger than 18" consult factory for information.
- ** With special alloys, temperatures of minus 300°F. to plus
 - 1600°F. can be handled.

- 3. Maximum axial extension movement is 10% of tabulated axial value.
- 4. To obtain greater movements or cycle life, contact the factory.
- Catalogue pressure ratings are based upon a maximum bellows temperature of 800°F. Actual operating temperature should always be specified.
- 6. Maximum test pressure: 1 1/2 x maximum working pressure.

50 PSIG FREE FLEXING: STYLE FSF OR FSW

Nominal	Con.	Axial	Lateral	Angular	Axial	Lateral	Angular	٧٧	V	W	′t
Diameter (in.)	Count	(in.)	(in.)	(deg)	Sp Rate (lbs/in)	Sp Rate (lbs/in)	(in-lb/deg) Sp Rate	OAL (in.)	Wt. (lbs.)	OAL (in.)	Wt. (lbs.)
	2	.59	.05	10	612	4096	30	6	14	8 7/8	5
3″	4	1.18	.19	10	306	512	15	8 1/4	15	11 1/8	5
Effective Area	6	1.67	.40	10	354	263	17	10 1/2	15	13 3/8	6
17.5 in. ²	8	1.92	.61	10	630	263	31	12 3/4	16	15 5/8	6
	10	2.41	.95	10	504	134	24	15	17	17 1/8	6
	2	.71	.05	10	608	5043	45	6 1/2	29	11 1/2	9
4″	4	1.41	.20	10	304	630	22	9	31	14	10
Effective Area	6	1.99	.42	10	324	267	21	11 1/2	33	16 1/2	11
23.6 in. ²	8	2.31	.66	10	577	267	38	14	35	19	12
	10	2.53	.90	10	461	136	31	16 1/2	37	21 1/2	13

-[FREE FLEXING EXPANSION JOINTS]-

50 PSIG FREE FLEXING: STYLE FSF OR FSW (CONTINUED)

Nominal	Con.	Axial	Lateral	Angular	Axial	Lateral	Angular	V	V	W	′t.
Diameter (in.)	Count	(in.)	(in.)	(deg)	Sp Rate (lbs/in)	Sp Rate (lbs/in)	(in-lb/deg) Sp Rate	OAL (in.)	Wt. (lbs.)	OAL (in.)	Wt. (lbs.)
	2	.76	.05	10	769	8882	80	6 3/4	34	13 1/2	15
5″	4	1.52	.18	10	384	1110	40	91/4	36	16	16
Effective	6	2.11	.38	10	414	478	39	11 3/4	38	18 1/2	17
Area 33.2 in. ²	8	2.41	.58	10	736	478	69	14 1/4	40	21	19
	10	2.52	.76	10	1123	467	106	16 3/4	42	23 1/2	20
	2	1.12	.07	10	856	7353	131	7 3/4	43	16 1/2	24
6″	4	2.23	.30	10	428	919	65	11 1/4	47	20	27
Effective	6	3.35	.67	10	285	272	43	14 3/4	51	23 1/2	30
Area 53.8 in. ²	8	4.05	1.08	10	408	219	62	18 1/4	54	27	33
	10	5.07	1.69	10	326	112	49	21 3/4	58	30 1/2	36
	2	1.16	.08	10	1218	10673	314	9 3/4	69	17 1/2	26
8″	4	2.32	.32	10	609	1334	157	14 1/4	72	22	30
Effective Area	6	3.48	.72	10	406	395	104	18 3/4	76	26 1/2	35
85.0 in. ²	8	4.34	1.20	10	580	317	149	23 1/4	81	31	39
	10	5.42	1.87	10	464	162	119	27 3/4	85	35 1/2	44
	2	1.10	.10	10	687	10583	235	10 3/8	62	17 1/2	48
10″	4	2.53	.29	10	738	2147	252	14 7/8	99	22	54
Effective Area	6	3.80	.66	10	492	636	168	19 3/8	104	26 1/2	60
121 in. ²	8	4.67	1.08	10	704	551	241	23 7/8	110	31	66
	10	5.83	1.68	10	563	262	192	28 3/8	116	35 1/2	72
	2	1.56	.08	10	1174	19003	559	10 3/4	136	17 1/2	61
12″	4	3.11	.31	10	587	7375	279	15 1/4	143	22	70
Effective Area	6	4.67	.69	10	391	703	186	19 3/4	150	26 1/2	78
175 in. ²	8	5.71	1.12	10	559	566	266	24 1/4	158	31	86
	10	7.13	1.75	10	447	289	213	28 3/4	165	35 1/2	94
	2	1.60	.07	10	1352	27285	803	11	189	17 1/2	65
14″ Effective	4	3.20	.29	10	676	3410	401	15 1/2	196	22	74
Area	6	4.80	.65	10	451	1010	267	20	204	26 1/2	84
206 in. ²	8	5.84	1.06	10	644	812	383	24 1/2	212	31	93
	10	7.30	1.66	10	515	416	306	29	220	35 1/2	102
1.611	2	1.66	.07	10	1561	39578	1165	11 1/2	206	17 1/2	76
16" Effective	4	3.32	.27	10	780	4947	582	16	213	22	87
Area	6	4.98	.61	10	520	1465	388	20 1/2	223	26 1/2	97
261 in. ²	8	5.98	.97	10	744	1179	555	25	234	31	107
	10	7.48	1.52	10	595	603	444	29 1/2	240	35 1/2	118
10//	2	1.71	.06	9.59	1769	55088	1622	12	271	17 1/2	86
18″ Effective	4	3.42	.25	10	884	6886	811	16 1/2	281	22	98
Area	6	5.13	.56	10	589	2040	540	21	291	26 1/2	110
322 in. ²	8	6.00	.88	10	843	1641	773	25 1/2	301	31	122
	10	7.50	1.37	10	674	840	618	30	311	35 1/2	134

CONTROLLED FLEXING EXPANSION JOINTS

Senior Flexonics Canada Controlled Flexing Expansion Joints combine a corrugated pressure carrier with closely mated neck rings and reinforcing or control rings. This construction permits their use with higher pressures (150 psig and 300 psig) in applications where large amounts of axial movement are required.

Dual expansion joints are available for applications where movement is greater than can be absorbed by a single unit. Contact factory for design information.

How to order: Example P/N

DIA	STYLE	ENDS	PRESSURE	CONS	LINER	COVER
8	CSF	FF	300	6	L	С

MATERIALS OF CONSTRUCTION

- BELLOWS: ASTM A240 T304
- PIPE: ASTM A53/A106
 50 lb. Series: Sch. 40
 150 lb. Series: Sch. 40
 300 lb. Series: Sch. 40
- FLANGES: A516-70 Plate (Std) ASTM A105 (Opt)
 50 lb. Series: 150 lb. ANSI B16.5 R.F.S.O.
 150 lb. Series: 150 lb. ANSI B16.5 R.F.S.O.
 300 lb. Series: 300 lb. ANSI B16.5 R.F.S.O.
- COVERS: Carbon Steel
- TIE RODS: Carbon Steel
- LINERS: 300 Series Stainless Steel
- 1. Rated cycle life is 2000 cycles per EJMA 8th edition for any one movement tabulated.
- 2. To combine axial, lateral movements, refer to page 7.

CONTROLLED FLEXING DATA

	SINGLE
Size Range	3" to 18"* NPS
Allowable Pressure Stainless Steel Bellows	Vacuum to 300 psig
Temperature Limits Stainless Steel Bellows	-20F to 800F. **
Axial Traverse	To 7 1/2" (depending on size)
Lateral Motion	Up to 1 1/2" (depending on size)

- * For sizes larger than 18" consult factory for information.
- ** With special alloys, temperatures of minus 425°F. to plus
 - 1600°F. can be handled.

- 3. Maximum axial extension movement is 10% of tabulated axial value.
- 4. To obtain greater movements or cycle life, contact the factory.
- Catalogue pressure ratings are based upon a maximum bellows temperature of 800°F. Actual operating temperature should always be specified.
- 6. Maximum test pressure: 1 1/2 x maximum working pressure.

150 PSIG CONTROLLED FLEXING: STYLE CSF OR CSW

Nominal	Con.	Axial	Lateral	Angular	Axial	Lateral	Angular		VV	FF		WW	
Diameter (in.)	Count	(in.)	(in.)	(deg)	Sp Rate (lbs/in)	Sp Rate (lbs/in)	(in-lb/deg) Sp Rate	OAL (in.)	Wt. (lbs.)	OAL (in.)	Wt. (lbs.)	OAL (in.)	Wt. (lbs.)
	2	.875	.05	10	1383	5307	69	7 1/4	30	8 7/16	35	11 7/16	21
3″	4	1.75	.18	10	691	663	34	10 1/4	41	11 7/16	46	14 7/16	32
Effective Area	6	2.625	.41	10	800	341	40	13 1/4	52	14 7/16	57	17 7/16	43
17.5 in. ²	8	3.50	.72	10	1423	341	71	16 1/4	63	17 7/16	68	20 7/16	54
	10	4.375	1.13	10	1139	174	57	19 1/4	74	20 7/16	79	23 7/16	65
	2	.875	.04	10	1204	5283	81	8 3/8	48	913/16	60	15 1/16	40
4″	4	1.75	.17	10	602	660	40	11 5/8	67	13 1/16	79	18 5/16	58
Effective Area	6	2.625	.38	10	697	339	46	14 7/8	86	16 5/16	97	21 9/16	77
23.6 in. ²	8	3.50	.67	10	1239	339	83	18 1/8	104	19 9/16	116	24 13/16	95
	10	4.375	1.05	10	1890	331	127	21 3/8	123	22 13/16	134	28 1/16	114

Nominal	Con.	Axial	Lateral	Angular	Axial	Lateral	Angular		VV	FF		WW	
Diameter	Count	(in.)	(in.)	(deg)	Sp Rate	Sp Rate	(in-lb/deg)	OAL	Wt.	OAL	Wt.	OAL	Wt.
(in.)					(lbs/in)	(lbs/in)	Sp Rate	(in.)	(lbs.)	(in.)	(lbs.)	(in.)	(lbs.)
5″	2	.875	.04	10	1537	9458	145	8 5/8	60	101/16	71	17 1/16	50
S Effective	4	1.75	.14	10	768	1182	72	11 7/8	80	13 5/16	91	20 5/16	70
Area	6	2.625	.32	10	890	608	84	15 1/8	101	169/16	112	239/16	91
33.2 in. ²	8	3.50	.57	10	1582	608	149	18 3/8	121	19 13/16	132	26 13/16	111
	10 2	4.375	.89	10	2413	593	228	21 5/8	142	23 1/16	153	30 1/16	132
6″	2 4	1.50 3.00	.06 .25	10 10	1536 768	8959 1119	235 117	10 1/2 14 3/4	82 116	12 1/8 16 3/8	99 133	20 7/8 25 1/8	76 110
Effective	6	4.50	.56	10	512	331	78	19	150	20 5/8	167	29 3/8	144
Area 53.8 in. ²	8	6.00	1.00	10	732	266	112	23 1/4	184	24 7/8	201	33 5/8	178
55.6	10	7.50	1.57	10	585	136	89	27 1/2	218	29 1/8	235	37 7/8	212
	2	1.50	.06	10	2061	13651	496	11 3/8	136	12 7/8	159	21 1/4	121
8″	4	3.00	.24	10	1030	1706	248	16 3/8	192	17 7/8	216	26 1/4	177
Effective	6	4.50	.53	10	687	505	165	21 3/8	249	22 7/8	272	31 1/4	234
Area 85.0 in. ²	8	6.00	.94	10	982	406	236	26 3/8	306	27 7/8	329	36 1/4	290
	10	7.50	1.47	10	786	208	189	31 3/8	362	32 7/8	386	41 1/4	347
	2	1.50	.05	10	2623	24731	899	12	188	13 7/8	222	21 7/8	145
10″	4	3.00	.20	10	1311	3091	449	17	267	18 7/8	300	26 7/8	223
Effective	6	4.50	.45	10	874	915	299	22	346	23 7/8	379	31 7/8	302
Area 121 in. ²	8	6.00	.79	10	1250	736	428	27	424	28 7/8	458	36 7/8	380
	10	7.50	1.24	10	1000	377	342	32	503	33 7/8	536	41 7/8	459
	2	1.50	.04	9.10	3180	40314	1465	11 1/4	251	13 5/8	300	21 1/8	210
12″	4	3.00	.17	10	1590	5039	732	16 1/4	367	18 5/8	416	26 1/8	326
Effective Area	6	4.50	.38	10	1060	1493	488	21 1/4	483	23 5/8	532	31 1/8	442
175 in. ²	8	6.00	.68	10	1516	1201	698	26 1/4	599	28 5/8	648	36 1/8	558
	10	7.50	1.07	10	1212	614	558	31 1/4	715	33 5/8	764	41 1/8	674
1 4//	2	1.50	.04	8.19	3727	60809	2211	12	302	14	366	21 3/8	231
14" Effective	4	3.00	.15	10	1863	7601	1105	17	432	19	496	26 3/8	361
Area	6	4.50	.34	10	1242	2252	737	22	562	24	626	31 3/8	491
206 in. ²	8 10	6.00	.61 .96	10 10	1776 1421	1811 927	1053 843	27	692 822	29 34	756 885	36 3/8	621 751
	2	7.50 1.50	.96	7.24	4286	927 87934	843 3197	32 11 3/4	822 376	54 141/4	885 416	41 3/8 21 1/8	272
16″	4	3.00	.05 .14	10	2143	10991	1598	16 3/4	528	19 1/4	568	26 1/8	424
Effective	6	4.50	.31	10	1428	3256	1065	21 3/4	680	24 1/4	720	31 1/8	576
Area	8	6.00	.54	10	2043	2619	1524	26 3/4	832	29 1/4	872	36 1/8	728
261 in. ²	10	7.50	.85	10	1634	1341	1219	31 3/4	984	34 1/4		41 1/8	880
	2	1.50	.03	6.81	4847	122102	4439	12 3/8	449	14 3/4		21 1/4	338
18″	4	3.00	.12	10	2423	15262	2219	17 3/8	617	19 3/4		26 1/4	506
Effective	6	4.50	.28	10	1615	4522	1479	22 3/8	785	24 3/4	850	31 1/4	674
Area 322 in. ²	8	6.00	.49	10	2310	3637	2116	27 3/8	953	29 3/4	1018	36 1/4	842
522 111	10	7.50	.77	10	1848	1862	1692	32 3/8	1121	34 3/4		41 1/4	1010

150 PSIG CONTROLLED FLEXING: STYLE CSF (CONTINUED)

Nominal	Con.	Axial	Lateral	Angular	Axial	Lateral	Angular		VV	FF		WW	
Diameter	Count		(in.)	(deg)	Sp Rate	Sp Rate	(in-lb/deg)	OAL	Wt.	OAL	Wt.	OAL	Wt.
(in.)					(lbs/in)	(lbs/in)	Sp Rate	(in.)	(lbs.)	(in.)	(lbs.)	(in.)	(lbs.)
2//	2	.875	.05	10	1383	5307	69	8	40	9 7/16	45	11 7/16	21
3″ Effective	4	1.75	.18	10	691	663	34	11	51	12 7/16	56	14 7/16	32
Area	6	2.625	.41	10	800	341	40	14	62	15 7/16	67	17 7/16	43
17.5 in. ²	8	3.50	.72	10	1423	341	71	17	73	18 7/16	78	20 7/16	54
	10	4.375	1.13	10	1139	174	57	20	84	21 7/16	89	23 7/16	65
	2	.875	.04	10	1204	5283	81	9 3/8	71	10 15/16	78	15 1/16	40
4″	4	1.75	.17	10	602	660	40	12 5/8	90	14 3/16	97	18 5/16	58
Effective Area	6	2.625	.38	10	697	339	46	15 7/8	109	17 7/16	115	21 9/16	77
23.6 in. ²	8	3.50	.67	10	1239	339	83	19 1/8	127	20 11/16	134	24 13/16	95
	10	4.375	1.05	10	1890	331	127	22 3/8	146	23 15/16	153	28 1/16	114
	2	.875	.04	10	1537	9458	145	9 5/8	88	11 3/16	98	17 1/16	50
5″	4	1.75	.14	10	768	1182	72	12 7/8	108	14 7/16	118	20 5/16	70
Effective Area	6	2.625	.32	10	890	608	84	16 1/8	129	17 11/16	138	23 9/16	91
33.2 in. ²	8	3.50	.57	10	1582	608	149	19 3/8	149	20 15/16	159	26 13/16	111
	10	4.375	.89	10	2413	593	228	22 5/8	169	24 3/16	179	30 1/16	132
	2	1.50	.06	10	4854	53492	743	12	132	13 1/8	142	20 7/8	76
6″	4	3.00	.25	10	2427	4629	371	16 1/4	166	17 3/8	176	25 1/8	110
Effective Area	6	4.50	.56	10	1631	1253	249	20 1/2	200	21 5/8	210	29 3/8	144
53.8 in. ²	8	6.00	1.00	10	2193	906	336	24 3/4	234	25 7/8	244	33 5/8	178
	10	7.50	1.57	10	2830	728	433	29	267	30 1/8	278	37 7/8	212
	2	1.50	.06	10	6889	57029	1658	12 3/8	195	14 1/4	218	21 1/4	121
8″	4	3.00	.24	10	3764	6924	906	17 3/8	251	19 1/4	274	26 1/4	177
Effective	6	4.50	.53	10	2713	2139	653	22 3/8	308	24 1/4	331	31 1/4	234
Area 85.0 in. ²	8	6.00	.94	10	3466	1510	834	27 3/8	364	29 1/4	388	36 1/4	290
	10	7.50	1.47	10	4300	1186	1035	32 3/8	421	34 1/4	444	41 1/4	347
	2	1.50	.05	10	7497	88345	2569	13 1/2	272	15 1/4	298	21 7/8	145
10″	4	3.00	.20	10	4172	10924	1429	18 1/2	350	20 1/4	377	26 7/8	223
Effective Area	6	4.50	.45	10	2982	3347	1022	23 1/2	429	25 1/4	455	31 7/8	302
121 in. ²	8	6.00	.79	10	3829	2375	1312	28 1/2	507	30 1/4	534	36 7/8	380
	10	7.50	1.24	10	5681	2231	1947	33 1/2	586	35 1/4	612	41 7/8	459
	2	1.50	.04	9.10	4983	81695	2376	13 1/4	391	15	403	21 1/8	210
12″	4	3.00	.17	10	2900	10565	1383	18 1/4	507	20	519	26 1/8	326
Effective	6	4.50	.38	10	2028	3166	967	23 1/4	623	25	635	31 1/8	442
Area 175 in. ²	8	6.00	.68	10	3152	2780	1503	28 1/4	739	30	751	36 1/8	558
	10	7.50	1.07	10	3953	2160	1885	33 1/4	855	35	867	41 1/8	674

300 PSIG CONTROLLED FLEXING: STYLE CSF (CONTINUED)

EXHAUST FLEXIBLE CONNECTORS

Senior Flexonics Canada exhaust flexible connectors are specifically designed for low pressure (15 psig) applications that require a high degree of flexibility.

Designed to produce low spring forces with a reduced assembly weight, our exhaust flexible connectors are an ideal solution for vibration and corrosive gas applications such as marine and stationary diesel engines, gas turbines and forced air ducting applications.

Available with plate flanges, angle flanges or weld ends. (Consult factory for larger sizes)

MATERIALS OF CONSTRUCTION

- BELLOWS: ASTM A240 T321-Multi-Ply
- PIPE: Carbon Steel/Stainless Steel
- FLANGES: Carbon Steel/Stainless Steel
- LINERS: 300 Series Stainless Steel
- COVERS: Carbon Steel

EXHAUST CONNECTOR DATA

	SINGLE
Size Range	2" to 48"* NPS
Allowable Pressure Stainless Steel Bellows	Vacuum to 15 psig
Temperature Limits Stainless Steel Bellows	-20F to 1500F. **
Axial Traverse	To 4.5" (depending on size)
Lateral Motion	Up to 1.0" (depending on size)

* For sizes larger than 18" consult factory for information.

** With special alloys, temperatures of minus 300°F. to plus 1600°F. can be handled.

STYLE DEJ DIESEL EXHAUST EXPANSION JOINTS

Pipe	Size	Axial	Lateral	Axial Sp.	Lateral Sp.	OAL Leng	yth (in.)	Approx. We	ight (lbs)
Size	Designation(in.)	Mmt. (in.)	Offset (in.)	Rate (lbs/in.)	Rate (lbs/in.)	Flanged End	Weld End	Flanged End	Weld End
3	DEJ-030-S	2.0	0.63	183	87	8.0	11.0	9	5
	DEJ-030-L	3.5	1.00	107	17	13.0	16.0	10	6
4	DEJ-040-S	2.0	0.63	136	106	8.0	11.0	12	7
	DEJ-040-L	3.5	1.00	79	21	13.0	16.0	14	9
5	DEJ-050-S	2.0	0.63	144	159	8.0	11.0	14	8
	DEJ-050-L	3.5	1.00	86	34	13.0	16.0	16	10
6	DEJ-060-S	2.5	0.63	165	249	8.0	11.0	16	11
	DEJ-060-L	4.0	1.00	99	53	13.0	16.0	19	13
8	DEJ-080-S	2.5	0.63	206	505	8.0	11.0	28	15
	DEJ-080-L	4.0	1.00	123	109	13.0	16.0	31	19
10	DEJ-100-S	3.0	0.50	115	454	8.0	11.0	35	21
	DEJ-100-L	4.5	0.88	70	103	13.0	16.0	40	25
12	DEJ-120-S	3.0	0.50	132	717	8.0	12.0	50	25
	DEJ-120-L	4.5	0.88	80	163	13.0	17.0	55	31
14	DEJ-140-S	3.0	0.50	108	751	8.0	12.0	59	25
	DEJ-140-L	4.5	0.88	64	162	13.0	17.0	66	33
16	DEJ-160-S	3.0	0.50	121	1078	9.0	12.0	101	28
	DEJ-160-L	4.5	0.88	72	232	14.0	17.0	108	35
18	DEJ-180-S	3.0	0.50	131	1355	9.0	12.0	102	32
	DEJ-180-L	4.5	0.88	78	314	14.0	17.0	110	40
20	DEJ-200-S	3.0	0.38	141	1916	9.0	12.0	114	35
	DEJ-200-L	4.5	0.50	84	414	14.0	17.0	122	44
22	DEJ-220-S	3.0	0.38	157	2548	9.0	12.0	129	39
	DEJ-220-L	4.5	0.50	94	550	14.0	17.0	138	48
24	DEJ-240-S	3.0	0.30	168	3225	9.0	12.0	150	42
	DEJ-240-L	4.5	0.50	101	696	14.0	17.0	161	53

SINGLE & DOUBLE EXTERNALLY PRESSURIZED EXPANSION JOINTS

Externally pressurized expansion joints are designed for use in straight pipe runs to accommodate high pressure and large amounts of thermal expansion and contraction. Pressure is applied to the bellows external surface via a gap between the inner guide ring and outer pipe shell. The stabilizing effect of external pressure permits use of a longer bellows with larger movement capability than a comparable internally pressurized design.

This rugged construction fully encases the bellows, assuring a high level of safety and durability. A convenient drain port is included that allows removal of condensate and s ediment in steam service applications.

How to order: Example P/N	DIA	STYLE	ends	PRESSURE	PRESSURE
	2	SX	FF	150	4

SX AND DX DATA

	SINGLE
Size Range	2" to 12"* NPS
Allowable Pressure Stainless Steel Bellows	Vacuum to 300 psig
Temperature Limits Stainless Steel Bellows	-20F to 800F. **
Axial Traverse	To 8″ (SX) To 16″ (DX)

 For sizes larger than 12" consult factory for information.
 With special alloys, temperatures of minus 300°F. to plus 1600°F. can be handled.

SINGLE SX-WW (weld ends) also available as SX-FF (flanged ends)

Dual with Anchor Base DX-WW (weld ends) also available as DX-FF (flanged ends)

150 AND 300 PSIG DESIGNS AVAILABLE

		Si	Single (SERIES SX)				Sing	gle (SE	RIES S	X)	Axial	Effective	Shell
Size (ins.)	Axial Mmt.	FF OAL	Wt.	WW OAL	Wt.	Axial Mmt.	FF OAL	Wt.	WW OAL	Wt.	Sp. Rate (lbs/in.)	Area (ins.²)	O.D. (ins.)
2	4	27	39	26	29	8	53	73	52	63	570	19	6 5/8
2 1/2	4	27	47	26	33	8	53	85	52	71	570		
	8	47	103	46	89	16	93	157	92	185	285	19	6 5/8
3	4	27	65	26	49	8	53	119	52	105	570		
	8	47	113	46	97	16	93	200	92	200	285	19	6 5/8
4	4	27	112	26	86	8	53	208	52	180	792		
	8	47	170	46	144	16	93	230	92	300	396	35	8 5/8
5	4	27	140	26	110	8	53	265	52	230	792		
	8	47	214	46	184	16	93	333	92	378	396	35	8 5/8
6	4	27	176	26	138	8	53	330	52	285	890		
	8	47	262	46	224	16	93	505	92	455	445	54	10 3/4
8	4	29	250	28	190	8	57	460	56	390	1296		
	8	49	342	48	282	16	97	644	96	574	649	88	12 3/4
10	4	29	312	28	226	8	57	563	56	462	1434		
	8	49	462	48	376	16	97	863	96	762	717	118	14 1/2
12	4	29	387	28	259	8	57	676	56	530	1105		
	8	49	563	48	435	16	97	1028	96	882	553	163	16 3/4

MATERIALS OF

- BELLOWS
 A 240-304
 Other Materials Available
- FLANGES A-105/A516-70 2" thru 12" 150 lb. & 300 lb. R.F.S.O. B16.5
- PIPE/SHELL A53/106 Gr. B or A516-70 2" thru 10" Sch. 40 12" Std. Wall .375" thk.
- **RINGS** A285 GR. C or A516-70
- ANCHOR BASE
 Carbon Steel
 (Standard on NDX)
- DRAIN, VENT PORTS Carbon Steel

EXPANSION COMPENSATORS

Here's the perfect way to absorb pipe motion in small diameter systems. Series H2 High pressure types permit 2" pipe motion — $1 \ 3/4$ " compression and 1/4" extension. Series H3 High pressure types permit 3" pipe motion $2 \ 3/4$ " compression and 1/4" extension. Senior Flexonics Canada expansion compensators provide the lowest cost method to take up thermal growth.

Senior Flexonics Canada compensators are externally pressurized as opposed to the standard internally pressurized models. The external pressurization principle eliminates the possibility of the bellows buckling, which is one of the major causes of compensator failure.

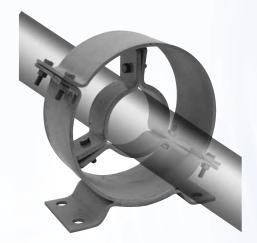
SPECIFICATIONS: SERIES H2,H3,& HB

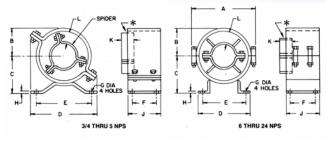
High Pressure	Pipe Size (in.)	Style	Max. Wkg. psig	Test psig	Overall Length (ins.)	Outside Diameter (lbs/in.)	Axial Sp. Rate (lbs/in.)	Effective Area (ins. ²)	Weight (lbs.)
Steel Piping Systems- MODEL H2	3/4	H2-MMT	200	300	12 1/8	3	141	2.20	5.5
Stroke-1 3/4" compression; 1/4" extension (Total stroke 2")	3/4	H3-MMT	200	300	16 3/4	3	126	2.20	6.6
Maximum Operating Temperature - 750° F.	1	H2-MMT	200	300	12 1/8	3 1/2	171	3.50	7.1
Maximum Working Pressure - 200 psig	1	H3-MMT	200	300	16 3/4	3 1/2	165	3.50	8.4
Maximum Test Pressure - 300 psig Fittings-Weld Ends (WE)	1 1/4	H2-MMT	200	300	14 1/8	4	162	4.84	10.2
Fittings-Male Thread Ends (MMT)	1 1/4	H3-MMT	200	300	16 1/8	4	167	4.84	10.8
Stainless steel bellows,	1 1/2	H2-MMT	200	300	14 1/8	4 1/2	262	6.50	12.3
Steel shroud and fitting	1 1/2	H3-MMT	200	300	16 1/8	4 1/2	262	6.50	13
	2	H2-MMT	200	300	14 1/8	4 1/2	269	7.60	13.2
	2	H3-MMT	200	300	15 7/8	4 1/2	269	7.60	13.9
Steel Piping Systems- MODEL H3 Stroke-2 3/4" compression; 1/4" extension	2 1/2	H2-MMT	200	300	15 1/2	5 1/2	362	12.9	19.6
(Total stroke 3")	2 1/2	H2-HWE	200	300	15 1/2	5 1/2	362	12.9	19.6
Maximum Operating Temperature - 750° F.	2 1/2	H3-MMT	200	300	16 1/2	5 1/2	362	12.9	19.8
Maximum Working Pressure - 200 psig Maximum Test Pressure - 300 psig	2 1/2	H3-HWE	200	300	16 1/2	5 1/2	362	12.9	19.8
Fittings-Weld Ends (HWE), Male Thread	3	H2-MMT	200	300	15 3/16	6 1/2	413	16.1	24.2
Ends (MMT), Flanged Ends (FF)	3	H2-HWE	200	300	15 3/16	6 1/2	413	16.1	24.2
Stainless steel bellows,	3	H3-MMT	200	300	21	6 1/2	413	16.1	36.3
Steel shroud and fittings	3	H3-HWE	200	300	21	6 1/2	413	16.1	36.3
	4	H2-HWE	200	300	15 3/16	7	499	24.2	27.6
	4	H3-HWE	200	300	21	7	499	24.2	40
COPPER Piping Systems	3/4	HB-FFS	200	300	12 1/2	2 3/8	227	2.2	2.2
Stroke-1 3/4" compression; 1/4" extension	1	HB-FFS	200	300	12 1/2	2 3/8	145	2.2	2.4
(Total stroke 2")	1 1/4	HB-FFS	200	300	13 13/16	2 3/4	175	2.7	3.1
Maximum Operating Temperature - 400° F. Maximum Working Pressure - 200 psig	1 1/2	HB-FFS	200	300	13 13/16	2 3/4	196	3.5	3.3
Maximum Test Pressure - 300 psig	2	HB-FFS	200	300	13 13/16	3 3/4	282	6.5	5.5
Fittings-Copper Female Sweat Ends (FFS) Stainless steel bellows and shroud	2 1/2	HB-FFS	200	300	14 7/16	4 3/8	337	9.6	7.5
Stail liess steel deliows and shroud	3	HB-FFS	200	300	14 7/16	5	389	12.9	10.0

CAUTION: Manufacturing process utilizes silver brazing. Do not exceed 1,000°F. during installation.

NOTE: (1) H2 & H3 Compensators are available with Flanged Ends. Consult factory for details.

(2) Stainless steel components should not be used in systems containing excessive chlorides. Premature failure may result.


SENIOR FLEXONICS PIPE ALIGNMENT GUIDES


Proper pipe alignment is vital to maximize service from expansion joints. Senior Flexonics improved, easy-to-instal pipe alignment guides are your ideal solution. These pipe alignment guides permit free axial movement of the pipe while restricting lateral and angular movement. U-bolts, hangers and rollers only support; Senior Flexonics pipe alignment guides protect.

LOCATION OF PIPE ALIGNMENT GUIDES

Whenever possible, install the expansion joint close to an anchor. Locate the anchor or first pipe alignment guide no more than 4 pipe diameters from the expansion joint. The second guide should be located no more than 14 pipe diameters from the first guide.

The chart on page 23 gives the recommended pipe alignment guide spacing along the balance of the line. For any pipe size and pressure, the recommended pipe alignment guide spacing can be readily determined. Find the pressure on the bottom scale; extend a vertical line from this point until it intersect the sloping line representing the pipe size involved; from this intersection extend a horizontal line to find pipe alignment guide spacing in feet on the left-hand scale.

* For maximum movement, install spider with half its length extended.

Nom. Pipe	Mode		General Dimensions - Inches										Maximum Insulation Thickness	Allow	Spider Fits Into	Wgt.
Size (ins.)	Number	A	В	с	D	E	F	G	н		К	L	in.	in.	Std. Pipe	(lbs.)
3/4	PG 075	6 3/8	2 1/4	3 1/8	6 1/4	4 3/4	1 1/2	5/8	3/16	3	1 1/2	1 3/8	1 3/8	3	4	5
1	PG 100	6 3/8	2 1/4	3 1/8	6 1/4	4 3/4	1 1/2	5/8	3/16	3	1 1/2	1 1/4	1 1/4	3	4	5
1 1/4	PG 125	6 3/8	2 1/4	3 1/8	6 1/4	4 3/4	1 1/2	5/8	3/16	3	1 1/2	1 1/8	1 1/8	3	4	5
1 1/2	PG 150	7 3/8	2 3/4	3 1/2	7	5 1/2	2 1/2	5/8	3/16	3	1 1/2	1 1/2	1 1/2	3	5	6
2	PG 200	7 3/8	2 3/4	3 1/2	7	5 1/2	2 1/2	5/8	3/16	3	1 1/2	1 1/4	1 1/4	3	5	6
2 1/2	PG 250	10 5/8	4 1/4	4 7/8	8 1/2	7	2 1/2	5/8	3/16	4	2	2 1/2	2 1/2	4	8	12
3	PG 300	10 5/8	4 1/4	4 7/8	8 1/2	7	2 1/2	5/8	3/16	4	2	2 1/8	2 1/8	4	8	12
3 1/2	PG 350	12 5/8	5 1/4	5 1/2	10 1/2	9	2 1/2	5/8	3/16	4	2	3	3	4	10	15
4	PG 400	12 5/8	5 1/4	5 1/2	10 1/2	9	2 1/2	5/8	3/16	4	2	2 1/2	2 1/2	4	10	15
5	PG 500	12 5/8	5 1/4	5 1/2	10 1/2	9	2 1/2	5/8	3/16	4	2	2 1/8	2 1/8	4	10	15
6	PG 600	12 1/2	5 3/8	6 1/4	9 1/4	7 1/4	2 3/4	5/8	1/4	4	4	1 1/2	1 1/2	4	12	20
8	PG 800	14 1/2	6 3/8	7 1/4	10 1/4	81/4	2 3/4	5/8	1/4	4	4	1 1/2	1 1/2	4	16	25
10	PG 1000	17 3/4	8	9	13	11	4	3/4	1/4	6	6	2	2	6	16	45
12	PG 1200	20 1/8	9	9 3/4	14	12	4	3/4	1/4	6	6	2	2	6	20	55
14	PG 1400	22 1/8	10	11 1/8	15 1/2	13 1/2	4	3/4	3/8	6	6	2 1/2	2 1/2	6	22	65
16	PG 1600	24 1/8	11	12 1/8	16 1/2	14 1/2	6	7/8	3/8	8	8	2 1/2	2 1/2	8	24	95
18	PG 1800	26 5/8	12	13	17 1/2	15 1/2	6	7/8	3/8	8	8	2 1/2	2 1/2	8	26	115
20	PG 2000	28 5/8	13	14 3/4	19 1/2	17 1/2	6	1 1/8	3/8	8	8	2 1/2	2 1/2	8	30	135

SPECIFICATIONS: SERIES PGT

NOTE: Additional pipe supports are usually required in accordance with standard practice.

Additional sizes, insulation thickness, and motion options are available. Please consult factory for pricing and availability.

INTERMEDIATE PIPE ALIGNMENT GUIDE SPACING CHART

FIGURE NO. 1: EXPANSION JOINTS

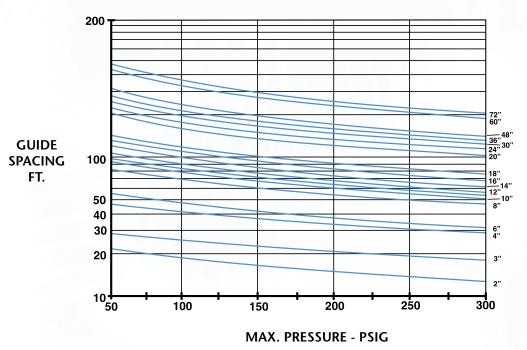


Chart is based upon sch. 40 pipe.

FIGURE NO. 2: MODEL H2, H3, & HB COMPENSATORS

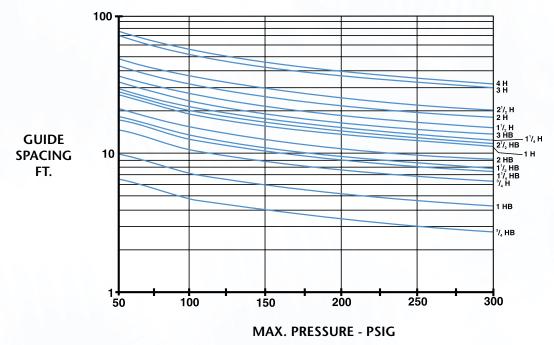


Chart is based upon sch. 40 pipe and type K copper tubing.

FLEXIBLE METAL PUMP CONNECTORS

WHY USE SENIOR FLEXONICS PUMP CONNECTORS?

The basic function of pump connectors is to provide piping systems with the flexibility needed to absorb noise and vibration, compensate for thermal growth, or permit motion of other piping elements.

Senior Flexonics pump connectors are a perfect match of style, wall thickness and design to minimize the forces and stress within piping systems. These pump connectors are factory engineered, manufactured and tested to effectively minimize the stress on pump and compressor housings and to isolate vibrations transmitted by mechanical equipment. Senior Flexonics can help you comply with noise level requirements by reducing pipe vibration throughout a structure.

FEATURES:

- ABSORBS THERMAL GROWTH MOTION Excellent protection to adjacent piping and equipment.
- COMPENSATES FOR MISALIGNMENT Reduces stresses.
- CONTROLS VIBRATION Normal mechanical equipment vibrations are reduced at the connector.
- **REDUCES NOISE** High pipe vibration noise is greatly reduced . . . often eliminated.
- ALL METAL CONSTRUCTION Eliminates shelf life problems and allows operation at elevated temperature.

BSN STAINLESS STEEL CONNECTORS

Pipe		Overall	Live	[Design Data				
Size	Model Number	Length	Length	Approx.	Working Pressure				
(in)		(in)	(in)	Wt. (lb.)	@ 70°F.	@ 250°F.			
1/2	SA-BSN-008-12	12	8	3/8	1048	964			
3/4	SA-BSN-012-12	12	6 3/4	3/4	900	828			
1	SA-BSN-016-12	12	6 1/2	1	711	654			
1 1/4	SA-BSN-020-12	12	6 1/4	1 1/4	563	518			
1 1/2	SA-BSN-024-12	12	6 1/4	1 1/2	427	393			
2	SA-BSN-032-12	12	5	2	398	366			
2 1/2	SA-BSN-040-14	14	6	4	341	314			
3	SA-BSN-048-14	14	6 3/4	5	256	236			
4	SA-BSN-064-18	18	8 1/2	8 1/2	232	204			

NOTE: Also available from 18", 24", 36" and 48" overall in sizes ½" – 2" Optional • SCH 80 fittings • HEX Male Nipples • Double Braid for higher pressure

BRC BRONZE CONNECTORS

Pipe		Overall	Live Length	Design Data			
Size	Model Number	Length		Approx. Wt. (lb.)	Working Pressure		
(in)		(in)	(in)	Wt. (ID.)	@ 70°F.	@ 250°F.	
1/2	SA-BRC-008-12	12	8	1/2	706	607	
3/4	SA-BRC-012-12	12	7 1/2	1	577	496	
1	SA-BRC-016-12	12	6 3/4	1 1/4	470	404	
1-1/4	SA-BRC-020-12	12	5 3/4	1 3/4	361	310	
1-1/2	SA-BRC-024-12	12	5 3/4	2	329	282	
2	SA-BRC-032-12	12	4 3/4	2 1/2	317	272	

• For use in copper piping systems

FLEXIBLE METAL PUMP CONNECTORS

DESIGN CHARACTERISTICS

BSN Conectors: Stainless Steel hose and braid, SCH 40 carbon steel NPT nipples.

BRC Connectors: Bronze hose and braid, copper female sweat ends. For use in copper piping systems.

BSFS Connectors: Stainless Steel hose and braid, 150lb. raised face forged steel Slip On flanges.

TCS-R Connectors: Multi-Ply Stainless Steel bellows, carbon steel 150lb. flat faced flanges.

BSFS STAINLESS STEEL CONNECTORS

Pipe		Overall	Live	Γ			
Size	Model Number	Length	Length	Approx. Wt. (lb.)	Working Pressure		
(in)		(in)	n) (in) ¹		@ 70°F.	@ 250°F.	
2	SA-BSFS-032-12	12	8	11	285	245	
2 1/2	SA-BSFS-040-12	12	7 3/4	15	285	245	
3	SA-BSFS-048-12	12	7 5/8	21	256	235	
	SA-BSFS-048-18	18	13 5/8	22	256	235	
4	SA-BSFS-064-12	12	7 3/8	28	250	230	
	SA-BSFS-064-18	18	13 3/8	29	250	230	
5	SA-BSFS-080-12	12	6 1/4	33	200	184	
	SA-BSFS-080-18	18	12 1/4	36	200	184	
6	SA-BSFS-096-12	12	6	41	170	156	
	SA-BSFS-096-18	18	12	43	170	156	
8	SA-BSFS-128-12	12	5 5/8	63	212	195	
	SA-BSFS-128-18	18	11 5/8	66	212	195	
10	SA-BSFS-160-18	18	11 1/4	90	175	161	
12	SA-BSFS-192-18	18	10 3/4	135	160	147	
14	SA-BSFS-224-18	18	10 5/8	190	150	138	

Optional: • Stainless Steel Flanges

300 Lb Flanges

TCS-R STAINLESS STEEL CONNECTORS

Pipe		Overall	Live	Fitting	Design Data			Effective Area	
Size	Style	Length	Length	Length	Approx.	Working Pressure			
(in)		(in)	(in)	(in)	Wt. (lb.)	@ 70°F.	@ 250°F.	(in.²)	
2	TCS-R-200	6	4 3/4	5/8	20 1/2	225	210	6.9	
2 1/2	TCS-R-250	6	4 3/4	5/8	24	225	210	6.9	
3	TCS-R-300	6	4 3/4	5/8	25	225	210	8.8	
4	TCS-R-400	6	4 1/2	3/4	35	225	210	15.1	
5	TCS-R-500	6	4 1/2	3/4	38	225	210	23.5	
6	TCS-R-600	6	4 1/2	3/4	41 1/2	225	210	33.2	
8	TCS-R-800	6	4	1	68	225	210	59.3	
10	TCS-R-1000	8	6	1	118	225	210	93.5	
12	TCS-R-1200	8	6	1	147	225	210	134.0	
14	TCS-R-1400	8	5 1/2	1 1/4	205	225	210	171.0	

NOTE • Model TCS-R rated for 1" compression, 3/8" extension, 1/8" -5/16" lateral and pump vibration. (Depending on size)

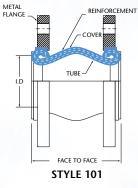
Movements shown are non-concurrent

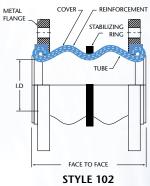
Larger sizes available upon request.

SENIOR FLEXONICS RUBBER EXPANSION JOINTS

Senior Flexonics stocks and distributes a comprehensive range of rubber expansion joints for use in many tough, demanding industrial applications such as air conditioning, heating and ventilation systems, petrochemical, industrial process piping systems, power generation, marine services, paper, water and sewerage systems.

Senior Flexonics standard rubber expansion joints feature an engineered sphere design bellows which is inherently stronger than the hand fabricated old standard cylindrical shapes. Internal pressure within a sphere is exerted in all directions distributing forces evenly over a large area. The spherical design "flowing arch" reduces turbulence, sediment build-up, thrust area and the effects of thrust on the piping system equipment when compared to the "high arch" design.


Standard stock units in styles 101 and 102 are constructed from EPDM rubber inner liner and outer cover, with an embedded nylon cord reinforcement and wire reinforced flanged collars. Floating flanges allow for easy installation and alignment of bolt holes.


Other materials and styles of rubber flexible joints are available on request or can be designed to meet customers' specific requirements.

DESIGN DATA:

STYLE 101 SINGLE SPHERE CONNECTORS STYLE 102 TWIN SPHERE CONNECTORS

Size	Style	F/F	Allowable Movements				
(in)	Style	• / •	Compression	Extension	Lateral	Angular	Pressure @ 70° F psig
1 1/2	RJ-101-EP-024	6	1/2	3/8	1/2	15°	214
	RJ-102-EP-024	7	2	1 3/16	1 3/4	35°	
2	RJ-101-EP-032	6	1/2	3/8	1/2	15°	214
	RJ-102-EP-032	7	2	1 3/16	1 3/4	35°	
2 1/2	RJ-101-EP-040	6	1/2	3/8	1/2	15°	214
	RJ-102-EP-040	7	2	1 3/16	1 3/4	35°	
3	RJ-101-EP-048	6	1/2	3/8	1/2	15°	214
	RJ-102-EP-048	7	2	1 3/8	1 3/4	35°	
4	RJ-101-EP-064	6	5/8	3/8	1/2	15°	214
	RJ-102-EP-064	9	2	1 3/8	1 1/2	35°	
5	RJ-101-EP-080	6	5/8	3/8	1/2	15°	214
	RJ-102-EP-080	9	2	1 3/8	1 1/2	35°	
6	RJ-101-EP-096	6	5/8	3/8	1/2	15°	214
	RJ-102-EP-096	9	2	1 3/8	1 1/2	35°	
8	RJ-101-EP-128	6	5/8	3/8	1/2	15°	214
	RJ-102-EP-128	13	2 1/4	1 3/8	1 3/8	35°	
10	RJ-101-EP-160	8	5/8	1/2	3/4	15°	214
	RJ-102-EP-160	13	2 1/4	1 3/8	1 3/8	35°	
12	RJ-101-EP-192	8	3/4	1/2	3/4	15°	214
	RJ-102-EP-192	13	2 1/4	1 3/8	1 3/8	35°	
14	RJ-101-EP-224	8	3/4	1/2	3/4	15°	114
16	RJ-101-EP-256	8	3/4	1/2	3/4	15°	114
18	RJ-101-EP-288	8	3/4	1/2	3/4	15°	114
20	RJ-101-EP-320	8	3/4	1/2	3/4	15°	114

Pressure Temperature Correction Factors				
100°F	X 1.0			
140°F	X 0.85			
170°F	X 0.65			
200°F	X 0.35			

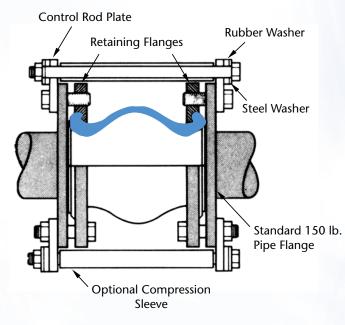
Movements given are non-concurrent. Consult Senior Flexonics for concurrent movement capabilities. Pressure rating is based on 70°F operating temperature. Maximum operating temp. 212°F. At higher temperatures the pressure rating must be reduced as per chart. Other sizes, styles and materials available upon request.

SENIOR FLEXONICS RUBBER EXPANSION JOINTS

FEATURES:

- Precision molded design eliminates transmission of noise and vibration, cushions water hammer and smooths out pumping impulses and waterborne noises.
- Excellent for suction and discharge installations. The inherent design strength of the spherical arch allows for high operating pressure (up to 214 PSIG). The nylon reinforcement permits the use of SERIES 100 rubber expansion joints under vacuum conditions (up to 25 in. of Hg).
- Easy installation on piping due to the elastic spherical body.

CONTROL UNITS


Control Rod/Unit Applications. Control Units are designed to absorb static pressure thrust developed at the expansion joint. When used in this manner, control unit assemblies are an additional safety feature, minimizing possible failure of the expansion joint or damage to the equipment.

- 1. Anchored Systems: Control unit assemblies are not required in piping systems that are anchored on both sides of the expansion joint, provided piping movements are within the rated movements as shown in the Design Data on page 26.
- 2. Unanchored Systems: Control unit assemblies are always recommended in unanchored systems. Additionally, control unit assemblies must be used when the maximum pressure exceeds the limit shown in the table below, or the movement exceeds the rated movement as shown in the Design Data on page 26.
- 3. **Spring Mounted Equipment:** Control unit assemblies are always recommended for spring mounted equipment. Control units must be used when the maximum pressure is higher than the ratings shown in the table below, or the movement exceeds the rated movement as shown in the

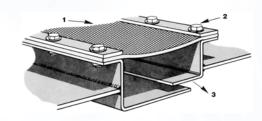
APPLICATIONS:

- Pulp and Paper
- Petrochemical
- Shipbuilding
- Pumps
- Circulating Water Lines
- Chemical
- Power Plants

- Waste Water Treatment
- Steel and Mining
- HVAC
- Compressors
- Turbine to Condensor
- Refrigeration
- Sewage

Typical example of a tie rod arrangement. Depending upon size/pressure, two or more rods will be required.

SIZE (ins.)	STYLE 101 (PSIG)	STYLE 102 (PSIG)
1-4	150	150
5-10	135	135
12-14	90	90
16-24	45	45


Control Rod Unit must be installed when pressure (test, surge, operating) exceeds the rating below.

SENIOR FLEXONICS NON-METALLIC

In addition to metal products we manufacture nonmetallic, duct type, fabric and composite expansion joints for the power generation, pulp and paper, co-generation, and ship building industries, as well as many other types of industry.

Senior Flexonics' non-metallic expansion joints are produced in various configurations in order to meet virtually any application requirements and operating conditions. They can be engineered to fit into existing systems without major changes in duct work.

Expansion joints are offered in either integral flange or belt-type geometry. They are designed not only for relieving stress due to thermal conditions but to eliminate transmission of vibration caused by fans and other equipment in ducting systems. Senior Flexonics now offers the Darlyn line of superior corrosion-resistant fabrics. Darlyn materials provide exceptional performance, even in the severe chemical environments found in ducts of flue gas desulfurization plants and pulp and paper recovery boiler systems.

SENIOR FLEXONICS 'SLIP PAKT' EXPANSION JOINTS

PERFORMANCE DATA

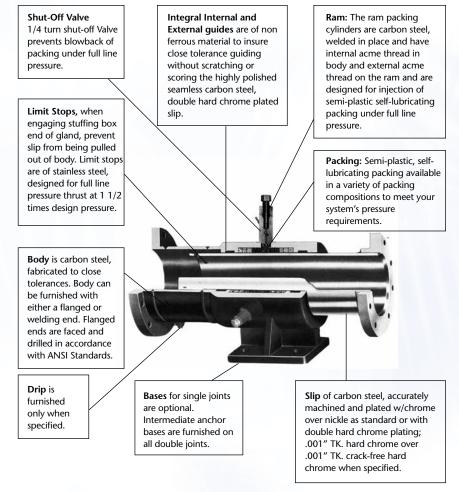
Pressures and Temperatures

Senior Flexonics "Slip Pakt" Expansion Joints are designed for maximum working pressures of 150 psig or 300 psig. and to a maximum temperature of 500°F. Higher pressure and temperature units are available upon request.

Media

Senior Flexonics "Slip Pakt" Expansion Joints are suitable for use in pipelines containing Steam-Water-Oil-Air or Gas.

Sizes

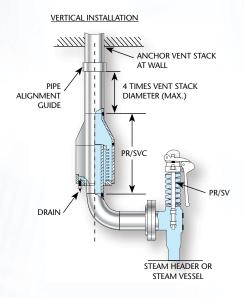

Senior Flexonics "Slip Pakt" Expansion Joints are available in Single or Dual units from $1 \ 1/2$ " NPS through 24" NPS. Larger sizes available upon request.

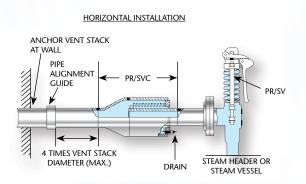
Stroke or Traverse

4 inch, 8 inch and 12 inch strokes are standard in all single units. 8 inch, 16 inch and 24 inch strokes are standard in all dual units. Longer strokes in either Single or Dual "Slip Pakt" Expansion Joints are available for special applications.

Repacking

Senior Flexonics "Slip Pakt" Expansion Joints can be packed under full line pressure.




PRESSURE RELIEF/ SAFETY VALVE CONNECTORS

A modern answer for a 100 percent sealed vent system to replace such old-fashioned devices as drip pan elbows with their inherent safety hazards. These connectors, by eliminating steam blowback and by preventing drafting through the vent stack, provide increased protection for both plant personnel and expensive equipment.

The Senior Flexonics pressure relief/safety valve connectors are available in 164 different models and may be ordered for quick delivery. Valve discharge sizes range from 1" through 10" and vent stack sizes range from 2" through 24" are available. The connectors come in both high and low pressure series with four standard motion capabilities. For smaller sizes there is 1 1/2" axial deflection with \pm 3/4" lateral deflection, and 4" axial with \pm 2" lateral; for larger sizes there is 2" axial deflection with \pm 1/2" lateral. (Special movements can be supplied as required.)

Consult factory for more information.

SENIOR FLEXONICS LTD., WARRANTY

Senior Flexonics Ltd., warrants that products furnished will, at the time of shipment, be free from defects in material and workmanship under normal use and service.

Senior Flexonics Ltd., will repair or replace any product in which defects occur within one (1) year from the date of installation or eighteen (18) months from the date of shipment, whichever occurs first. Purchaser shall be responsible for proper installation of the products purchased and that the products purchased are operating within the design limits of each unit.

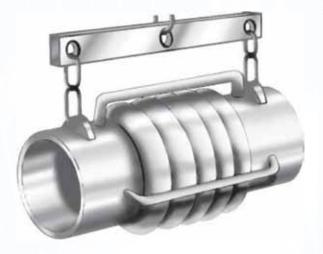
Senior Flexonics Ltd., makes no other warranty, express or implied, of merchantability and no other warranty, express or implied, of fitness for a particular purpose which extends beyond those warranties above. In no event shall Senior Flexonics Ltd., be liable for consequential or incidental damages. Liability shall not exceed the unit value of the item supplied.

-EXPANSION JOINT SPECIFICATION SHEET-

						EVBANSION JOHA
Com	pany:		Date:			
		Sheet of				
Proje	ct:		Inquiry No.			FRETURERS ASSIGNT
			Job No.			VALKS NO
	No./EJ Tag No.					
1.	Quantity					
2.		ize/I.D./O.D. (in.)				
3.	Expansion					
4a	Fluid Infor	mation	Medium Gas/Liq	uid		
4b			Velocity (Ft./Sec/)		
4c			Flow Direction			
5	Design Pre					
6	Test Pressu	ire, psig				
7a	Temperatu	re	Design (°F)			
7b			Max./Min. (°F)			
7c			Installation (°F)			
8a	Maximum	Installation Movement	Axial Compressio	on (in.)		
8b			Axial Extension (in.)		
8c			Lateral (in.)			
8d			Angular (in.)	(.)		
9a	Maximum	Design Movements	Axial Compressio	on (in.)		
9b			Axial Extension (in.)		
9c			Lateral (in.)			
9d				Angular (deg.)		
9e	0 11		No. of Cycles Axial Compression (in.)			
10a						
10b			Axial Extension (Lateral (in.)			
10c			Angular (deg.)			
10d 10e	Materials of Construction		No. of Cycles			
				Bellows		
11a 11b	Materials o	or Construction	Liners			
110 11c			Cover			
11d			Pipe Specification	26		
11u 11e			Flange Specificati			
12	Pode (Tie/	Limit/Control)				
12		nic Linkage				
13	Anchor Ba	se (Main/Intermediate)				
15a		al Limitations	Overall Length (i	n)		
15a 15b	Dimension		Outside Diameter			
150 15c			Inside Diameter (
16a	Spring Rat	te Limitations	Axial (lbs./in.)	(
16b	opring Rat		Lateral (lbs./in)			
160 16c	L		Angular (in-lbs./d	deg.)		
17	Installation	Position Horiz./Vert.		uc5./		
17 18a		surance Requirements	Bellows Long.	Seam		
18b	Quanty 115.	arance requirements	Weld NDE	Attach.		
18c			Pipe NDE	11ttacii.		
18d			Design Code Req	urd		
18e			Partial Data Regr			
18c				***		
181 18g						
10g	Vibration Amplitude/Frequency					
20		rumentation Connection				
21a		Facing				
21a 21b	igr	O.D. (in.)				
210 21c	Dec	I.D. (in.)				
21d	ge]	Thickness (in.)				
21u 21e	an	B.C. Diameter (in.)				
21¢	Special Flange Design	No. Holes				
21g	scia	Size Holes				
21g 21h	b	Hole Orientation				

[INSTALLATION INSTRUCTIONS]-

Senior Flexonics Expansion Joints are fully inspected at the factory and are packaged to arrive at the job site in good condition. Please, immediately upon receipt at the job site, verify that there is no freight damage; i.e., dents, broken hardware, loose shipping bars, etc.


Because the bellows expansion joint is required to absorb thermal and /or mechanical movements, the bellows element must be constructed of a relatively thin gage material. This requires special installation precautions. The following steps should be taken prior to installation of the expansion joint into the pipeline or duct.

- The opening into which the expansion joint will be installed should be examined to verify that the opening for which the expansion joint was designed does not exceed the installation toler ances designated by the designer and/or purchaser. If the opening exceeds the tolerance, notify Senior flexonics at once for a disposition.
- 2. The attachment edges of the pipe or duct should be smooth, clean, and parallel to each other.
- 3. The area around the expansion joint should be cleared of any sharp objects or protrusions. If not removable, the should be noted so that they can be avoided.
- 4. Expansion joints provided with lifting lugs should be lifted only by the designated lifting lugs. SHIPPING BARS (PAINTED YELLOW) ARE NOT DESIGNED TO BE LIFTING DEVICES DIRECTLY ON THE BELLOWS ELEMENT OR BELLOWS COVER. For expansion joints not provided with lifting lugs (i.e., less than 500 lbs.), the best lifting method should be evaluated at the time of installation.
- 5. The shipping bars are installed on an expansion joint to maintain shipping length and give the expansion joint stability during transit and installation. DO NOT REMOVE THE SHIPPING BARS UNTIL THE INSTALLATION IS COMPLETE.

Installation:

The following precautions must be taken when installing an expansion joint:

1. Remove any protective covering from the ends of expansion joint. Plywood covers may have been used to protect flanges or weld ends. Check inside expansion joint for dessicant bags or any other material.

- 2. When a flow liner is installed in the expansion joint, orient with FLOW ARROW POINTING IN DIRECTION OF FLOW.
- 3. Using lifting lugs, lift joint to desired location and position into pipeline or ducting.
- 4. Weld end expansion joints.
 (a) PRIOR TO WELDING, COVER THE BELLOWS ELEMENT WITH A CHLORIDE FREE FIRE RETARDANT CLOTH. This is to prevent arc strikes, weld splatter, etc. from damaging the bellows element.
- (b) Using the proper electrode, weld the expansion joint to adjacent piping. DO NOT USE BELLOWS TO CORRECT FOR MISALIGNMENT OF PIPING UNLESS THIS HAS BEEN CONSIDERED IN THE DESIGN OF THE EXPANSION JOINT.
- 5. Flanged end expansion joints.
- a) Orient expansion joints flanges so that the bolt holes are aligned with the mating flanges. DO NOT FORCE THE EXPANSION JOINT TO MATCH THE BOLT HOLES OF THE MATING FLANGE. This causes torsion on the bellows and will severely reduce the bellows capability during operation and may cause premature failure of the expansion joint. It is good practice to leave one pipe flange loose until the expansion joint is installed or to purchase an expansion joint with a flange that will rotate.
- b) Install gaskets and bolt to the required torque recommended by the flange manufacturer.

INSTALLATION INSTRUCTIONS CONTINUED

After Installation BUT PRIOR TO HYDRO TEST

- 1. Inspect entire system to insure that anchors, guides and pipe supports are installed in strict accordance with piping system drawings. A pipe guide spacing chart is provided below to aid in this check.
- 2. ANCHORS MUST BE DESIGNED FOR THE TEST PRESSURE THRUST LOADS. Expansion joints exert a force equal to the test pressure times the effective area of the bellows during hydro test. Pressure thrust at design pressure may be found on the individual drawings. Refer to EJMA Safety Recommendations.
- 3. If the system media is gaseous, check to determine if the piping and/or the expansion joint may require additional temporary supports due to the weight for water during testing.
- 4. REMOVE SHIPPING CARS (PAINTED YELLOW) PRI OR TO HYDROTESTING. Shipping bars are not designed for hydrostatic pressure thrust loads.
- 5. Hydrostatically test pipeline and expansion joint. ONLY CHLORIDE FREE WATER SHOULD BE USED FOR HYDROTEST. (Published reports indicate chlo ride attach of stainless steel bellows as low as 3 PPM). Water should not be left standing in the bellows.

General Precautions

- 1. Cleaning agents, soaps and solvents may contain chlorides, caustics, or sulfides and can cause stress corrosion which appears only after a bellows is put into service.
- 2. Wire brushes, steel wool and other abrasives should not be used on the bellows element.
- 3. Hydrostatic test pressure should not exceed 1 1/2 times the rated working pressure unless the expansion joint was specifically designed for this test pressure.
- 4. Some types of insulation leach chlorides when wet. Only chloride free installation materials should be used for insulating an expansion joint.

SENIOR FLEXONICS WARRANTY IS VOID UNLESS THE ABOVE INSTRUCTIONS ARE FOLLOWED

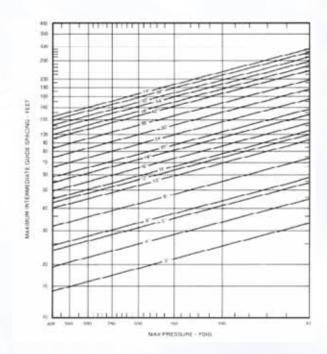
Pipe Guide Spacing Table

- Senior flexonics recommends that for FlexwayTM 1. Single Expansion Joints the first guide be located within four (4) pipe diameters from the expansion joint and the second guide be located within a distance of fourteen (14) pipe diameters from the first guide. The remaining guides are to be in accordance with the table below.
- 2. Senior flexonics recommends that for X-Press Expansion Joints the first guide be located within twelve (12) pipe diameters from the expansion joint. The remaining guides are to be in accordance with the formula below.

Maximum intermediate guide spacing for any pipe material or thickness may be calculated using the following formula:

$$L = 0.131 \sqrt{\frac{E1}{PA Ra}}$$

- Maximum intermediate guide Where L =
 - Spacing (feet) E = Modules of elasticity of pipe
 - material (psi).


(lbs/in.)

- Р Design pressure (psig). A =Bellows effective area (in2).
- Axial stroke of expansion joint 3 =
- (in). Axial spring rate of bellows R_=
- When bellows is compressed in

NOTES

- operation use (+) 3 R; when extended, use (-) $3R_a$, which extended, use $(-)3R_a$. Dead weight of the pipe should
- also be considered for guide spacing.

Recommended Maximum Spacing of Intermediate Pipe Guides for Applications Involving Axial Movement Only. (Values Based on Standard Weight Carbon Steel Pipe)

NOTES

Toll Free 1-800-267-1975 Website: www.flexonics.com Please send all inquiries regarding the products found in this catalog to sales@flexonics.com

